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1. Introduction

The rational orthonormal system

V1_|a"|2HZ_“k n=1,2,...

Bn(z) = B{al,ag,...,an}(z) 1—anz 1— Ekz’

is known as Takenaka—Malmquist system
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{z"}2L, the latter corresponding to ax = 0 for all k. Laguerre basis and two-
parameter Kautz basis®’ are also special cases of (1.1). The inner product that we
use for L?(OD) and the boundary values of functions in H?(D) is

21
(F,G) = % /0 F(e")G(e'Ydt.

Under the isometric isomorphism relation between them, we identity H?(D)
with the space of the boundary values of the functions in H?(D). As is well known,
the condition

S (1 = Jax]) = o (12)

k=1

is sufficient and necessary for {Bn} to be a complete basis in the Hardy space
H?(D). All the traditional studies of the orthonormal system are based on the
condition (1.2). In Ref. 15, we introduce an approach to functional decomposition
that is different from all those traditionally using the TM system. Instead of using
a previously known parameter sequence {ax} satisfying the condition (1.1), we
choose {ax} according to the given signal f te—be—decompesed. There are two
main reasons of doing such decomposition. First, such decomposition is adaptive.
Intuitively, as well as supported by experiments, approximation to a given f with
fast convergence in energy is achieved. Secondly, under such decomposition any
physically realizable signal may be decomposed into a series of mono-components
of which each possesses non-negative and thus physically meaningful instantaneous
a,}(2) become
multi-starlike functions, and therefore their phase derivatives are non-negative on
the boun D Q

Stbseqaertt to the previously established convergence result wrder—me greedy
algorithm prineiple, the present paper farther proves a convergence rate that
demonstrates the fastness of the convergence of AFD. The writing plan is as follows.
In Sec. 2 we describe the AFD algorithm referred to Ref. 15. In Sec. 3 we prove
the convergence rate. In Sec. 4 we show that in the average sense Fourier series is
the optimal. In Sec. 5 we provide the transformation matrices between the adaptive
rational orthogonal system and the related sequen D the shifted Cauchy kernels

frequencies.»#81213 In particular, if we set a1 = 0, then all B(q, a,

.....

. sy RN 1431 1 +1
and their sartattonsseithmdtiplestareer-Hrrronet

2. Adaptive Fourier Decomposition

Let f € H?(D). To expand f = f1 = g1 into its Fourier series we use the following
process. The remainder f2(z) = fi(z) — f1(0) has zero at z = 0. Therefore, the
reduced remainder g»(z) = f2(2)/z € H2(D). Since g2(z) — g2(0) has zero at z = 0,
the reduced remainder gz = (f2 — f2(0))/z € H?(D), and so on. We subsequently
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have
f(z) = f1(z) = fa(z) + 92(0)
= 2g2(2) + 91(0)
= 2%93(2) + 292(0) + 91(0)

::z”*lgn(z)+—z”gn41(0)-%"'+‘Zg2(0)*‘91(0) (2.1)

This process is to first project fi1 onto the unit vector one and then find the
remainder. Then project the reduced remainder, g», that is the standard remainder
f2 being divided by z. The process from g; to get the reduced remainder g» may be
called a Fourier sifting. Then project go onto the same unit vector one, and subse-
quently find the next standard remainder f3 and the reduced remainder g3, and so
on. Every time it projects the reduced remainder to the unit vector one. Projecting
onto the unit vector one amounts to take average on all function values, that is
equivalent to evaluate the function value at zero. In AFD, instead of projecting
f1 = g1 onto the unit vector one, we project it onto the evaluator

/ 2
eqay(z) = 11—76‘;”’ a € D.
Note that it is a generalization of one, as efo; = 1. By Cauchy’s integral formula,
we have

(fi,eqay) = V1 —lal2fi(a).
Below we denote, for any f € H?(D),

Aa(f) = (1 —al?)|f (). (2.2)
We adaptively select a = a3 € D so that

g1, eqa)? = (1~ laz|*)|ga(ar)? = max{(1 —[a[?)|g1(a)[* :a € D}.

In Ref. 15, we prove that for any g1 € H?(ID) such a; is attainable at a point in
D. This result is called the Maximal Selection Principle. The standard remainder
f2(2) = fi(z) = /1 — |a1|? f1(a1)e(a,} (2) is accordingly the minimized one in norm
sense. We subsequently find the reduced remainder g» by

92(2) = fa(2)

We call the process getting gk+1 from gk through such optimal selection of ax based
on the Maximal Selection Principle a maximal sifting process, or a maximal sifting
process through ax. If we algebraically deduce gk+1 from gk not through an optimal
selection of ea,} based on the Maximal Selection Principle, but through some
evaluator ey, then the corresponding process is called the sifting process through
b. The sifting process through a = 0 is the so-called Fourier sifting.

1—a1z

. (2.3)
Z — a1

1350007-3
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A dictionary D in a Hilbert space H is a set of functions of unit norm with
cy offers greater effi-

SpanD = H. A dictionary is, in general, redundant. Redu D

ciency in approximation.

is g-]‘ESﬁj‘ E]gEl‘if]‘]i‘HSS AR

foHows: We begin with a dictionary D in the Hardy Space H?(D). Here, the special
dictionary D is given by

D= {e{a}(z) = Vi laP a € D}.

1—

— ’
a

(2.4)

1 Note that every era)(2) is a normalized Cauchy kernel function.

Adaptive Fourier Decomposition. Associated with AFD the following notations
and properties will be used. We set g1 := f1 := f. Then, for each m > 1, we

inductively define

Hm(f) = Span{B{al},B{alla2},...,B{a1 ..... am}}. (25)

The standard remainder

reminders:

In particular,

We have where

frvr = f = P, (f),
where P, (f) is the orthogonal projection of f to Hm(f). fm are standard

£} I fm—11? = [(fm—1, Bm-1)[?.
Theredunecedremninders

= f nﬁll—dkz
k=1 Ok
(f, Bm) = (fm, Bm) = <gm,€{am}>-

(2.6)

In AFD we employ maximal sifting processes, that is, when the proceeding

efa;}>! =1,...,m — 1, have been selected, the next ea,, 1y is selected according to
Maximal Selection Principle, that is

[{9m> eqa,, 1) = max{|(gm, e(a})| 1@ € D},

where

Aa(gm) = |<9m»e{a}>|2 =(1- |a|2)|gm(a)|2.

2 After all, we have
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The concepts dictionary and redundancy are associated with the so called greedy algorithm. AFD, although using a similar energy principle, due to the reduced remainder process and the maximal selection principle, does not belong to greedy algorithm.

The reduced remainders are
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Theorem 2.1.%5 For any function f € H?(D), if ay,...,ax,... are consecutively
selected according to the Maximal Selection Principle, then we have

[= Z (f, Biay....an}) Biay,...an}
k=1
1 in the H?(D) sense.
2 3. Convergence Rate on H2(D, M)

For the dictionary D, we define the subclasses of functions
H?(D,M) := {f €H*(D): f=) ckek,ex €D, Y e| < M}. (3.1)
k=1 k=1
3 Note that the convergence in the definition takes the H?-norm sense.
4 Lemma 3.1. If f in H?>(D, M), then || f|| < M.

Proof. For f € H?(D, M), there exist a sequence of complex numbers {ck} and a
sequence {ex} € D such that f = > "2, cxex with Y =) |ex| < M,

I1£11?

(f
‘ﬁzckek

< Z e [ ex)- (3.2)
k=1
From the Schwarz inequality and the characterized expansion of f in {ex},
I£117 < MIi£], (33)
5 which gives || f|| < M. m|

6 We have:

Lemma 3.2. Let f € H*(D,M) and f = Y, ck€{a,}- If there exists a series of
positive numbers such that Zﬁozl pn < o0 and

o0
Z 1- ‘ak‘za‘k < Pn;,
k=1
7 then f belongs to the positive Wiener algebra Wa. In particular, if for every k,

8 lak| < r < 1, then f € Wa.

1350007-5
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Proof. Writing each e, into its Taylor series expansion, we have

1) =3 exeqan (2)
k=1

o0

~
Il

1

ek 1 — |ak|? (1 + ZEEZ”)
n=1
1

M

o0 o0
Ck —|ak|2—|—2zn cxy/ 1 — |ak|2ay.
1

=1 n=1 k=

=~

In the closed unit disc the series is uniformly dominated by

o0
CM + Z Pn;
n=1
1 and therefore is in the positive Wiener algebra. O
2 We now turn to analysis of approximation rate of AFD. We need the following

3 lemma.

Lemma 3.3.% Let {dm}X=; be a sequence of nonnegative numbers satisfying

di < A, dm+1 < dm (1 — df). (3.4)
Then there holds
A
dm S .
m

Theorem 3.1. Let D be the dictionary of normalized Cauchy kernels in H?(D).
Then for each f € H?(D, M), decomposed by Adaptive Fourier Decomposition, we
have

M
[ fmll< T

Proof. In the process of Adaptive Fourier Decomposition, we have, due to (2.7),

| fmsa 12=1 fm 12 = 1(fm, Bm) 2.

Since f € H?(D, M), there exists a sequence {bx} € D such that f = Y22, ckeqp,)-
Therefore,

| fen 1?2 = [{fm; £)]
= ‘<fmyzck€{bk}>

k=1

< MS;lp‘(fmae{bk}H
= Msup v/T= ol fm(10)| (3.5)
k

1350007-6
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From Maximal Selection Principle and computation of the inner product,

|<fm»Bm>‘ = Sug |<fm7B{a1 ..... am_l,a}>|

= su ,e
aeg|<gm @)l

gggvl — |al?| fm(a)]

m-—1 _
H 1— aka
K1 a — ak

nﬁl 1 — axbk
o bk —ax

Y

sup v/1 = [bic| | fon (b |
k

> sup 1 — [bk|?| fm (bk)|
k
> L fml? (3.6)
- M m 9 .
we therefore have
o vz (g LimlP
| et 120 S 2 (1 - 220 ). (37)

By setting A = M? and using Lemma 3.3, we obtain the desired estimate. O

Remark 3.1. The proved convergence rate is not a sharp estimate. It addresses the
worst case, that, apart from being in H2(D, M), does not assume other properties
for the signal. It is, in particular, regardless degree of smoothness of the signal. The
results on convergence rates of Fourier decomposition heavily rely on smoothness
of functions under consideration. Effectiveness (fastness) of greedy algorithm is
supported by intuition and experiments. In the concrete experimental examples
one often gets small errors after a few maximal sifting processes.

4. Justification of Fourier Series

Below we give a justification on the norm convergence of the traditional Fourier
expansion from the adaptive approximation point of view. Fourier expansion of a
given function in H?(DD), as described at the beginning of Sec. 2, corresponds to the
selection an = 0 for all n. At every selection it takes e;oy = 1 in the dictionary, and
projects the function and all its reduced remainders onto this fixed elements. We call
this Fourier shifting process. We show that for general signals in the Hardy space,
in the average sense, the Fourier shifting process gives rise to the best result. We
will introduce a probability measure P(dg) of reasonably symmetric properties on
the unit sphere S(H?(D)) of the Hardy H?(D) space. The first symmetric property

to be required is the rotational symmetry. We require, for any a = re't,

/ l9(a)2P(dg) = L(r). (4.1)
S(H2(D))

1350007-7
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The average of the projected energies over all functions on the sphere then is
identical with

/ (g, eqa)) P P(dg) = / (1~ af?)|g(a) 2P(dg)
S(H2(D)) S(H2(D))

=(1-7r%L(r), (4.2)
1 being independent of the orientation e't. We now proceed to showing that the
2 selection a = 0, among all a € D, gives rise to the largest average of the projected
3 energies.
The set of functions S(H?(D)), being identical with the unit sphere of the [2
space

{(co,cl,...,cn,...)|zck2: 1}, (4.3)
k=0

is viewed as the direct product of the sets

X1={(lcols---,lenl,--)] Z lenl? = 1},
n=0

and
Xo={(e®, ..., e )]0y €[0,20),n=0,1,...},
i.e.
S(H?(D)) = X1 x X>.

Let P(dp) and P(df) denote the probability measures on X3 and X5, respec-
tively, where P(dg) is the product probability of P(dp) and P(df), i.e. P(dg) =
P(dp) x P(df). P(df) is defined by the independent identical distributions (i.i.d.)
of its factor spaces {0k : Ok € [0,2m)} of which each is the normalized Lebesgue
measure in [0, 27). P(dp) is defined by evenly distributed |cn|? in [0, 1] for each n.
For different n they are not independent, but with the constraint condition given
in the definition of the space X;. Adopting the above defined probability over the
unit sphere S(H?(D)), and considering the random variable

Aa(9) = g, eqap) | = (1 = lal?)lg(a)?, g € S(H*(D)), (4.4)
4 we have
5 Theorem 4.1. Under the probability defined on S(H?(D)) the mathematical expec-
6 tation E(Aa) takes its mazimum value at a = 0.

Proof. We have, for any a = re'® € D,
1 21
[ lg@PPlg) = 20) = o [ L
S(H2(D)) T Jo

1 21 i
—o [ [l Rrgar
TJo  JsH2(D)

1350007-8
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1 21 A
=[5 [ et Eaetag)
S(H2D)) <7 Jo

= > lenlPr®" P(dg)

S(H2(D)) h=0

_ /x S lenlr2" P(dp). (4.5)

1 n=0

Denoting the probability event |co|? € XL, £) by Ei, then P(Ek) = &, and
the energy left for Y =, [ck|? is, approximately, 1 — % Denote by P(dp/Ek) the

conditional probability, k = 1,..., L, then the last entry of (4.5) is equal to

N o)
lim Y P(Ex) lenl272N P (dp/ Ex)
g_ k /X > p/Ex

N—oo0 1/Ex h=0

N o)
1 k
— lim Y — ~ +72> [ensal?r®" | P(dp/Ex)
N — oo é N X, /E} (N nz:;)
N N
: koo, kY 1
- Jim. (Zm 23 L) <1 _ N) N)
k=1 k=1
1 1
= (/ tdt+r2L(r)/ (1 —t)dt)
0 0
1 7
=(=+—=L . 4.
(5+50) (18
Comparing (4.5) with (4.6), we obtain
1
L(r) = 5,2

and, by (4.4),

sup
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Therefore,

sup E(Aa) = sup(1 — [a[2)L(|a])

aeh aeh
1— 72
=A sup ————
refo,1) 1 —r2(1 — A)
=A, atr=0. O

Remark 4.1. The probability distribution of X; in Theorgm 4.1 corresponds to

a(t) = 1, and that for “|cn|P,p # 2, being evenly distributed in [0, 1]” corresponds
—2

to a(t) = gtpT. In the two cases, respectively, A = 1 and

Remark 4.2. It is well known that better smoothness givés #mples faster conver-
gence of Fourier series. In the probability language this may be interpreted as «(t)
having greater values nearby one. In the case A is close to one, and, by Theorem 4.2,
the Fourier series has a faster convergence rate in the average sense.

5. Transformation Matrices Between T-M and Shifted Cauchy
Kernel Systems

In Ref. 14, we show, for any given m-tuple {as,...,an},

Span{Bi, Bz, ..., Bn} = Span{ F{a,}, Fta, a.}: - - » Efay,...an} b (5.1)
where if ax # 0 having multiplicity [ in {as, ..., ak}, then
Eay...a) = m 1>1
and if ax = 0 having multiplicity ! in {aq,...,ax}, then
By ay=2"1 1>1
The system

{Ex}k=1 = {Efai}> Frar a0y Elay,an) }
is called the shifted Cauchy kernel system, or the Cauchy wavelet system by some

authors. Although it is not orthogonal, it has some advantage over the TM system
{Bk}r=1- For instance, if a real-valued signal s can be expressed by

n
s(e'') = Re Z ek Ex (e,
k=1
which is easy to compute, then the Hilbert transform of s(t) is

n
Hs(e) = Im Z ek B (€M),
k=1
which is also easy to compute.

Proposition 5.1. For arbitrary n, given a sequence {aw}p—,, denote Bn =
{Bk}rk‘:lT, 4, = {Ek}Ele. Then the invertible transformation matriz Tn such

1350007-11
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that B, = TnBn is given by Th = {ekj }nxn where

j—1 _ _
o — l—‘aj‘zl—[ ak — Qi
J 1 — akaj i—ll_akai,

when all {ax} are distinct; or

_ {D‘*l{z‘*lBj(z)](am), am 0,
Kj =

DU-D[B;(2)](0), am =0,
1 where m and q are uniquely determined by k. D9=1 denoting the (q—1)th derivative,
2 when {ax} has the multiplicity.
3 Proof. There are two cases to consider.

Case (i). Let {ak} be a sequence of distinct points in D. Since Bp is obtained
from #,, through Gram-Schmidt procedure, for finite n, Span B, = Span #,,, and
elements in By, are orthogonal, so Ex = E};l ckj Bj, where

ckj = (Ex, Bj)
:<BJ7 >
= Bj(ax)
\/1—|aj|2 ax — Gj
k=1,2,...,n. 5.2
1 — akaj Hl—aka. St (5.2)

Case(ii). When some ax has multiplicity larger than one, the corresponding
FEyx changes. Suppose, for the given n, there are totally N different points
{a1,az2,--,an}, with Im being the corresponding multiplicity of am, l1+lz+ -+
In = n. In this case, Span B, = Span &, is irrelevant to the order of the points. We
may set the order to be {a1,...,a1,a2,...,a2,...,an,...,an}, and, accordingly,
Ek = Z}(:]_ Ckj Bj, and

ki = (Ek, Bj)
There exist some unique m and g such that Ex = m, am # 0 or Ex =
2971 am = 0, where 1 < ¢ < lm. From Residue theorem, for j < k, for the first
case,
ckj = (Ek, Bj)
= (Bj, Ek)
o 1
= — B' it —_—
27 Jo i (e )(1 — ame-1t)d dt

1350007-12
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1 1
= — B;j -1 _— 4

2mi /ZeD i(2)2 (z —am)d :

1
= o DO OB G)llam) (5:4)
and, for the second case,

ckj = (Ek, Bj)

= <Bj s k)

1 21

_ it
27 Jo i) G

:% zeD J(Z)ziqdz
_ ﬁp(q—l)[gj (2)](0). (5.5)

In both cases, for j > k,
Bj L Span{Ba,..., Bk} = Span{Ex, ..., Ex},

and thus Bj L Ek,j > k. So, ckj = 0,j > k. Therefore, writing the n-dimensional
vector ®n, Bn in the matrix version, there exists

;1 0 -+ 0
cp1 C22 -+ 0

Tn: PRI e s e e s e s ’
Cnl Cn2 *** Cnn

such that ®,, = ThBp. Note that cxk # 0 and T, is invertible.
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