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ABSTRACT. We generalize the notions of harmonic conjugate functions and Hilbert
transforms to higher dimensional euclidean spaces, in the setting of differential
forms and the Hodge-Dirac system. These harmonic conjugates are in general far
from being unique, but under suitable boundary conditions we prove existence and
uniqueness of conjugates. The proof also yields invertibility results for a new class
of generalized double layer potential operators on Lipschitz surfaces and bound-
edness of related Hilbert transforms.
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1. INTRODUCTION

This paper considers higher dimensional analogues of the concept of harmonic
conjugate functions in the plane. We first review the situation for plane domains.
Let D be a simply connected domain in R? = C. Then, given a harmonic function
u(z) in D, a harmonic conjugate to u(z) is a second harmonic function v(z) in D
such that f(z) = u(z)+iv(z) is an analytic function, i.e. satisfies Cauchy—Riemann’s
equations. The function v(z) exists and is unique modulo constants. For example,
if one requires that v vanishes at some fixed point in D, then we get a well defined
map u - V. Since harmonic functions are in one-to-one correspondence with their
boundary values, this defines the Hilbert transform

Hp : ulop - Vlap
for the domain. The Hilbert transform for a domain D R? concerns only functions
in D, mapping the real part of an analytic function to its imaginary part. In contrast,
the Cauchy integral concerns the relation between analytic functions in D and C\D.

This is best explained through Hardy spaces/projections. Given a functionh : 0D -
C, we form the Cauchy integral

1 h(w)

— dw, z D%,
21 Jop W —Z

F(z) =C*h(z) =%

where D := D and D~ := C\D. Taking traces, one obtains two boundary functions
fE(Q) :=lim,_z ,cp+ F(2) such that f*+f~ =h on dD. The Cauchy integral acts
by projection onto the two complementary Hardy subspaces of the boundary function
space, consisting of traces f* and f~ respectively. Discarding the exterior Hardy
function ¥~ and considering f := f* = u+iv, well posedness of the classical Hilbert
boundary value problem (BVP) for analytic functions shows that f is in one-to-one
correspondence with its real part u, as well as with its imaginary part v. (In this
introduction, we neglect technical details like regularity assumptions on D and h,
as well as the fact that maps normally are Fredholm, not exact isomorphisms, in
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order to explain the main ideas.) From the Hilbert BVP it can be shown that if h
is required to be real valued, then h is also in one-to-one correspondence with the
trace of its interior Cauchy integral f = C*h|op = $h+ z=p.v. [;5 h(w)/(w — z)dw.
Thus in the diagram

f-2v
C+|<9D/ Y
the double layer potential operator

Th(z) := Re(C*h|sn(2)) = %h(z) + %p.v./aD Im <%>h(w), z D,

is an isomorphism. This allows calculation of the Hilbert transform as
(1) v =Hpu=Im(C"(T 'u)sp).

Note that even though the Cauchy integral, for all D, uses the restriction of 1/(w—z2)
as kernel, the kernel of the Hilbert transform depends heavily on D due to the
factor T ~1. Unfortunately, in the literature the Hilbert transform is often incorrectly
identified with the Cauchy integral, since it happens to coincide with the (imaginary
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and d and 6 denote the exterior and interior derivative operators

dF(X) = AF(X) = Zn:ej A 0jF (%),
j=1

n
SF() = JF(X) =) e 10F(X),

i=1
where the exterior and interior products are dual in the sense that x,ury = u.X,y
for all multivectors u, X,y R". Multivector fields F taking values in the subspace
KR we refer to as k-vector fields. The Hodge-Dirac equation entails a coupling
between the di erent k-vector parts of F. If F = >, Fy, where Fy : D - kKRn,

the di erential operators map

)
B 9 B 9 B 9
. k—2 k—1 k k+1 k42
— R~ "R R +Rn—d> +Rn<a—

so that the Hodge-Dirac equation is equivalent to the system of equations dF,_; =
—dFk.1, 0 =<k = n. If F is monogenic, i.e. satisfies the Hodge-Dirac equation, then
it is harmonic, i.e. satisfies AF = (d +3)?F = (8d + dd)F = 0, or equivalently each
of F’s 2" scalar component functions is harmonic. Recall that d? = 3% = 0.

Fix 0 < k < n and consider a harmonic k-vector field U : D -~ ¥R". We say
that V; : D -~ K 2R"and V,: D - K*2R" form a pair of harmonic conjugates
to U if (d+d)(V; +U +V,) = 0, or equivalently dU = —4V,, U = —dV; and
dV2 = 6V1 =0.

Example 1.1. When n = 2 and k = 0 this reduces to the classical situation. Indeed,
consider an analytic function f = u+ iv. We identify R = °R? and iR = Z2R2
Fixing an ON-basis {e;, e,} for R?, we identify i =e; re,. Then

(d+3)(u+iv) = (e A01U+eyA05u) + (&) 2101V + ey 1i05V)
= (01U — 0yv)e; + (02u +0,Vv)e; =0

coincides with the Cauchy-Riemann equations. Hence v is a classical harmonic
conjugate to u if and only if V, =ve, re, : D — 2R?is a harmonic conjugate to
u in the sense of the Hodge-Dirac system. (In this case, the harmonic conjugate V,
vanishes.)

In the general case, we observe that a necessary condition for such V;, V, to exist
is that U is two-sided harmonic, i.e. 6dU = 0 = ddU. We also observe that V, V,
are only well defined modulo two-sided monogenic fields, i.e. the di erences V; —V/
and V, —V, of two sets of harmonic conjugates satisfy d(Vi —V;) =0 =d(Vi — V),
i =12 Whenl<k =< n-—1, the two-sided monogenic k-vector fields form an
infinite dimensional space (see Corollary [3.I1). Thus, in order to obtain a uniquely
defined higher dimensional Hilbert transform, further conditions need to be imposed
on V; and Vs, so that there is a well defined map

U e Vl,VQ.

In this paper we consider one possible such further condition on harmonic conjugate
functions, which extends the above technique of calculating conjugates with the
Cauchy integral and double layer potential operators to higher dimension. Under
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this further condition we say that the harmonic conjugate functions are of Cauchy
type. Since all component functions of U, V; and V, are harmonic, these fields are in
one-to-one correspondence with their trace on dD. Thus, equivalently we will have
a Hilbert type transform U|sp - Vi|sp, V2|sp for D.

The outline of the paper is as follows. In Section [21 we introduce the higher
dimensional Cauchy integral associated with the Hodge-Dirac system, and prove
existence and uniqueness results for Cauchy type conjugates to scalar functions, i.e.
k = 0 or k = n. This amounts to proving invertibility of the classical double layer
potential operator for domains in R". Both the boundedness and invertibility of
this singular integral operator on Ly-spaces on Lipschitz boundaries (1 < p < oo for
boundedness and 2 — < p < oo for invertibility) are deep results, but are by now
well known facts.

Section [4] contains the main new results of the paper, Theorem[4.1] and establishes
existence and uniqueness of Cauchy type conjugates to k-vector fields, 1 <= k < n—1.
This general case is more involved than the scalar case, since the generalized double
layer potential operators which appear will not in general be invertible, not even
Fredholm, as they have infinite dimensional null spaces and cokernels. However, us-
ing the theory of boundary value problems for Dirac operators (which is reviewed in
Section[3)), we manage to show invertibility of the operator acting from a complement
of the null space to its range, in a natural L,-based Hilbert space.

In the final Section [ we illustrate the non-uniqueness of harmonic conjugate
functions in higher dimensional euclidean spaces by constructing di erent conjugate
functions which are not in general the Cauchy type conjugates. This second con-
struction is based on the theory of Hodge decompositions, and the obtained harmonic
conjugate functions are said to be of Hodge type.

In the literature, various generalizations of harmonic conjugate functions to higher
dimensional euclidean spaces can be found. A classical generalization for the upper
half space, using divergence and curl free vector fields, was introduced in harmonic
analysis by Stein and Weiss [11], see Stein [12] and Example [2Z.7(1). A generalization
more similar to our construction is due to ArZanyh [1], who studied two-forms B :
D - 2R3 conjugate to scalar functions in three dimensional space. In the setting
of Cli ord analysis, without dealing directly with the more fundamental di erential
operators d and 9, there is work on Hilbert transforms and harmonic conjugate
functions in euclidean space by Brackx, De Knock, De Schepper and Eelbode [6].
See also the references therein for calculations on special domains like the unit ball.

2. HILBERT TRANSFORMS FOR SCALAR FUNCTIONS

Writing D := d+9 for the Hodge—Dirac operator, this is an elliptic first order par-
tial di erential operator whose square is the Hodge-Laplace operator D? = A. Just
like the exterior and interior di erentiation use the exterior and interior products,
the Hodge-Dirac operator uses the Cli ord product as

DF(xX)= ~FX) = Zn:ej a 0jF (X).
i=1

The Cli ord product is the unique associative algebra product ~ on R", with
identity 1  °R" = R, such that

3) VaW=V_IW+VaAW, WAV=WLV+HWAV
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for all vectors v IR" = R" and all multivectors w R". The main di erence
between the complex product in R? and its higher dimensional analogue in R", the
Cli ord product, is that the latter is non-commutative. Here J and . denote the
left and right interior products, defined as the operations adjoint to left and right
exterior multiplication, i.e.

()] WaX,Yy = X,WrY, XLW,Y = X, YAW, W, X,y R".

Following standard notation, we write w; ~ Wy =: W; W, for short. Important to this
paper is the following mapping property of the Cli ord product. If v IR"=R"
andw  XR", then
VW k—1 Rn k+1 Rn_
This is clear from (3).
Concretely, if {e;};.; denotes the standard ON-basis for R", the induced ON-
basis for the space of k-vectors KR" is {&s}jsj=k, and in total {es}sc
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To avoid topological technicalities, we shall restrict attention to the following two
types of strongly Lipschitz domains D* R" (i.e. domains whose boundaries are
locally graphs of Lipschitz functions). We write =~ := dD* = 0D~ for the Lipschitz

boundary between D™ and D~ = R" \D". By D we denote either D* or D~.

e A graph domain DT = {X ; Xn > 0(Xy,...,Na_1)} above the graph of a
Lipschitz regular function ¢ : R"™! — R. Here D~ denotes the domain
below the graph.

e An interior domain D™, being a bounded domain which is Lipschitz dif-
feomorphic to the unit ball, and whose boundary is locally the graph of a
Lipschitz function (in suitable ON-bases). The exterior domain D~ is the
interior of the unbounded complement of D.

The unit normal vector field v(y) on X is always assumed to point into D, i.e.
the region below the graph or into the exterior domain. We define non-tangential
approach regions y(y) D,y X, for these Lipschitz boundaries. For graph
domains D¥, fix c; greater than the Lipschitz constant for X, and let

YY) =y(y,D®) ={(X,xn) R"!'xR; x(Xn—yn)>c|X =Y}

fory = (y,yn) Z. For exterior and interior domains, and y X, consider the
coordinate system around y in a neighbourhood of which X is a Lipschitz graph.
The approach region y(y, D¥) is defined as the truncated part of the cone, where
dist (X,y) < ¢, and ¢, denotes a su ciently small constant.

The boundary function spaces we use are the spaces L,(Z; ), where := R".
For a field F in D*, define its non-tangential mazimal function

N.F)):= sup [F()l y =
xey(y,D¥)

A fundamental theorem in harmonic analysis and singular integral theory due to

Coifman, MciIntosh and Meyer [7], states that the Cauchy integral is bounded on

L,(Z; ) on any Lipschitz surface . By surface, we shall mean a hypersurface in

R".

Theorem 2.2. Let D* be Lipschitz graph, interior or exterior domains, and fix
l1<p<oo. Leth Ly(Z; ) and define the monogenic field

C*h(x) := i/EE(y—x)v(y)h(y)do(y), x D%

Then N,(CTh) ,+ N,(C h) , =C h , for some C < oo depending only on p
and the Lipschitz constants for the graphs describing Z.
The principal value Cauchy integral

Eh(x) = 2p.u. / E(y —xvh()doy), x =

erists a.e. and defines a bounded operator E : Lp(Z; ) - Lp(Z; ) such that
E? = 1. The boundary traces £1(z) = limy_;xey@p+t) CTh(X) and 7(z) :=
limy_.; xeyz,0-) C"h(X) exist for a.a. z Z and in Ly, and

Eth:=ft=L(h+Eh) and E h:=Ff =L(h—Eh)

1
2

define Ly-bounded projection operators.
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Let h  Ly(Z; *) be a k-vector field and consider harmonic conjugates in D*.
The Cauchy integral produces a monogenic field

F=V,+U+V, = Cth: D" —. k—2Rn kRn k+2Rn
in D*. Indeed, the mapping properties of the Cli ord product show that multi-

plication with the normal vector gives vh : = - X" IR" K+IRM and a similar
splitting when multiplying with the vector E(y — X) shows that

©) Che) = [ EG=)04) ) doty)
+ [ (E6 =201 00) +ht) + EG =) 5 06) «hE))) doty)
P

+ /E E(y —X) AV(y) A h(Y) do(y) =V, + U + Vs,

Definition 2.3. Given a two-sided harmonic field U : D* - XR", i.e. 8dU =0 =
ddU, we say that Vy,V, are Cauchy type harmonic conjugates to U if there exists
h:> -~ KR"such that U = (C*h),, V; = (CTh)_, and V5, = (C*h),,, where
subscript k denotes the k-vector part of a multivector. We call h the dipole density
of the system Vy, U, V, of harmonic conjugate functions. The corresponding map of
boundary values

Uls — Vils, Vals,

we refer to as the (Cauchy type) Hilbert transform for the domain D.

The following theorem on existence and uniqueness of Cauchy type harmonic
conjugates to scalar functions (k = 0, n) is the main result of this section.

Theorem 2.4. Let D R" be a Lipschitz graph, interior or exterior domain and
assume that 2 <p < oo,
(i) Let U : D - R= °R" be a harmonic function such that N,(U)  Ly(Z).
If D is an exterior domain, also assume that limy_ .U = 0 and has trace
u = Uy such that [up do(y) = 0, where Y is the function from Theorem[22
Then there is a unique Cauchy type harmonic conjugateN =V, :D - 2R"
to U, and a dipole density h  Ly(Z), such that

N,(V) p+ h , < N,(U) .

If D is a graph or an interior domain, then h is unique, and if D is an
exterior domain, then h is unique modulo constants.

(ii) In the case k =n, (i) remains true when U :D - °R"=R andV =V,
D - Z2R" are replaced byU :D -~ "R"=R andV =V, :D - "2R",

The scalar cases k = 0 and k = n are significantly more straightforward than
the non-scalar case 1 < k =< n — 1 (to be treated in Section [4]) as they reduce to
the question whether the classical double layer potential equations are invertible, as
explained in the two dimensional case in the introduction. On Z, define the principal
value double layer potential operator

(") Kh(x) := 2IO-V-/E E(y —x),n(y) h(y)da(y) = (Eh(xX))o,

forh:% - R,x Z. The boundedness of K in Ly(Z), 1 < p < oo, is a direct
consequence of Theorem[Z2. Invertibility of 1 £K on the other hand, which the proof
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of Theorem[Z4luses, is not true for all p on a general Lipschitz surface. Invertibility in
L,(Z) was proved by Verchota [13] via the method of Rellich estimates. Invertibility
in the range 2 < p < oo was proved by Dahlberg and Kenig [8] by atomic estimates
in real Hardy space H'(X), duality and interpolation.

Theorem 2.5. Assume that 2 < p < oo and let = be a Lipschitz graph or the
boundary of an interior / exterior domain. Then

| + K : Ly(Z) — Lp(X) :h — h+ (Eh), = 2(E*h),

is an isomorphism. This is also true for | —K :h - (E~h)y in the case of a graph
domain. In the case of an exterior domain, | — K is a Fredholm operator with null
space consisting of constant functions and range consisting of all u  Lp(Z) such
that [up =0 for some Lq(X), where 1/p+1/q = 1.

We remark that Theorems[Z.Z], [Z.4land [Z.5] can be generalized to strongly Lipschitz
domains with more complicated topology. In this case existence and uniqueness of
conjugates hold only modulo finite dimensional subspaces, and 1 &+ K are Fredholm
operators with higher dimensional null spaces and cokernels.

Proof of Theorem[27). To prove (i), take h  L,(Z; °) and define U:= (C*h), and
U= U|Z = %(I +K)h  Ly(Z; ©). Theorem determines uniquely h such that
U = u, possibly modulo constants in the case of an exterior domain. In any case, this
defines uniquely a Cauchy type harmonic conjugate V := (C*h),, since C~ maps
constants to zero in an exterior domain.

To prove (ii), consider a system of Cauchy type harmonic conjugates C*h =V +U,
whereh:3 - "R™V:D - "2R"andU:D - "R". Introduce the operator
U - Uey (i.e. the Hodge star operator for di erential forms up to a sign) which maps
k-vectors to n—k-vectors. We have C*(her) = Uer+V e, where the functions take
valuesin °R", YR"Mand 2R" respectively. This reduces (ii) to (i), sinceU - Uey
commutes with the Dirac operator and the Cauchy integral by the associativity of
the Cli ord product. O

We note from the proof the following relations between Cauchy type harmonic
conjugate functions and Hilbert transforms of scalar functions, the Cauchy integral
and the classical double layer potential operator.

Corollary 2.6. LetV : DT - 2R" be the Cauchy type harmonic conjugate to the
harmonic function U : DT - YR" = R, with suitable estimates of non-tangential
mazximal functions. Then

U+V =2CH((1 + K)u),

where C* is the (interior) Cauchy integral, K is the double layer potential operator,
and U = Uls. Taking the trace v =V |5 of the conjugate function, the Cauchy type
Hilbert transform of U is

u— v=_>_1+E)I +K)'u.

Replacing CT, | + K and | + E with C~, | — K and | — E, the corresponding
formulae hold for the domain D™
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Example 2.7. (1) If D = R is the upper half space with the flat boundary
> = R"!, then K = 0 since E(y — x) in this case is orthogonal to v(y). Thus
h = 2u and

_ + — 2 / y—X n
V(x) =2(CTu)a(X) = en n ons Je Iy _Xan(y) dy, x R,
where e, is the basis vector normal to R"~!, so in this case the Hilbert transform
U|gn-1 - V|grn-1 for the upper half space coincides with the bivector part of the
principal value Cauchy integral u - (Eu)s.

A classical higher dimensional notion of harmonic conjugates, using divergence
and curl free vector fields in the upper half space R}, is due to Stein and Weiss [11],
and we refer to Stein’s book [12] for further details. The upper half space has the
special property that the vector e, normal to dR? = R"! is constant. Split a
vector field F in R? into normal and tangential parts as

F(X) = U(X)en + U(X),

where U is a scalar function. Stein and Weiss consider the tangential vector field
U as a harmonic conjugate to U, if F is a divergence and curl free vector field, i.e.
if F is monogenic. Since the Cli ord product is associative, this is equivalent to
U+Ue,:R? - °R"  2R" being monogenic since

D(U + Ue,) = D((Ue, + U)ey) = (D(Ue, + U))e, = 0.

Due to the very special geometry of R", the bivector field Ue, will in fact be
the Cauchy type harmonic conjugate to U. Indeed, if V denotes the Cauchy type
conjugate, then as noted in the introduction, the di erence Ue, — V is a two-sided
monogenic bivector field. Moreover V (X) = enAfRn E (y—x)u(y)dy, since the normal
vector is constant. Hence e, A (LAJ'en —V)|gr»-1 = 0. From Theorem [3.3 below we
deduce that Gen —V =0, since there are no non-trivial monogenic field which are
normal (in the sense of Definition [3.I]) on the boundary.
Thus, from the above relation Ue, = 2(C*u),, the Stein—Weiss tangential vector

field U is seen to be

~ _ 2 X — y A n

009 =5 [ oy, x=x) RY
and taking the trace of U, then—1 component functions of L~J|Rn_1 are the Riesz
transforms of u. We remark that harmonic conjugates in the sense of Stein and
Weiss do not generalize to more general domains D, since they depend on a canonical

direction e,.
(2) If D is the unit disk in the plane, then

1 — X,
Kn() = 2pv. [ L nw) doy) = ),

where [h] denotes the mean value of h, regarded as a constant function. This gives
(I +K)'u=u-—[u)/2 and

V(x) = (2CT(1 + K)"'u)o(x) = (2CTu —[u])2 = 2(CTu)2(x)

_1 [ yax _ ity _ 1 on ~
m /2 |y_x|2u(y) do(y) (Eu)2(e") IZT[p.V./0 cot((t —s)/2)u(s) ds,
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when x - e't, y = e'S, i = e,e,, and the limit is pointwise a.e. and in Ly, 1 < p < oo,
Also here the Hilbert transform coincides with the imaginary part of the principal
value Cauchy integral. Note that this is far from being the case for more general
domains, not even when n = 2, or for higher dimensional spheres as we shall see
below. For the exterior of the unit circle, we see that (I —K)h = h—[h]. Thus I =K
has constants as null space and its range consists of all function with mean value
zero. Hence the function y in Theorem [Z.4], orthogonal to the range, is a constant
function.
(3) For the unit sphere Z in R", K is the operator

_ 1 h(y)
Khx) = 2020 /g (1= xy )2t G0
This is weakly singular and therefore compact on all L, spaces. In fact, this is
true whenever X is a smooth surface, since the normal vector will be approximately
orthogonal to E(y — X) in the kernel when y is close to x. Through a limiting
argument, it was proved by Fabes, Jodeit and Riviére [9] that K is a compact
operator on L, 1 < p < oo, whenever X is a bounded C' regular surface.

3. DIRAC BOUNDARY VALUE PROBLEMS

In this section we describe parts of the operator theoretic framework for Dirac
boundary value problems, developed by the first author in his PhD thesis [3], which
we use in Section [4] to extend Theorem [2.4] to general k-vector fields. In this section,
we focus on explaining the main ideas of proofs, but give references to full proofs.
By N(T), R(T) and D(T) we denote the null space, range and domain of an operator
T.

The basic picture is that the boundary function space

8 LX) =L(Z )=L(Z ) L(Z D) ... L(Z ") L& M
splits in two di erent ways into pairs of complementary closed subspaces
LQ(Z) = E+L2 E_L2 = N+L2 N_LQ.

In the first splitting L, = E*L, E~L,, the subspaces E¥L, denote the Hardy
type subspaces associated with the Dirac equation, i.e. E*L, consists of traces
of monogenic fields in D* and E~L, consists of traces of monogenic fields in D~
which vanish at infinity. The Hardy subspaces E¥L, = R(E*) are also the ranges
of the Hardy projection operators E* in L,(Z) from Theorem [Z.Z, which explains
the notation. There is a one-to-one correspondence between f = F|y, E*L, and
F = C*f : D* - R", and we sometimes identify F and f, referring to F as
belonging to the Hardy type subspace.

In the second splitting L, = N*L, N~L,, which is pointwise, the subspace
N*L, consists of all fields tangential to =, and N ~L, consists of all fields normal to
2.

Definition 3.1. A multivector field f : = - R" is tangential if v(X) 2 F(X) =0
for almost all x X, and it is normal if v(X) A F(x) = 0 for almost all x .

The two projection operators N* are

NTg:=v_i(vag) and N g:=va(vag).
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This tangential/normal splitting is orthogonal, so that g, +g_ 2= g, 2+ g_ 2,
when g.  N*L,. On the other hand, the Hardy space splitting is not orthogonal,
only topological in the sense that f, +f_. = f. + f_ whenf, E*L,.

The operator theoretic problem underlying boundary value problems is to under-
stand the relation between the splitting E*L, E L, and the splitting N L,
N ~L,.

Example 3.2. Consider the following basic Dirac BVP consisting in finding F :
D™ - R"solving the Dirac equation (d+9)F = 0 in D" with given normal part g
on the boundary Z. Under appropriate regularity assumptions, this means exactly
that we are looking for f = F|yy, ETL, such that N~f = g. Uniqueness and
existence of such f, for each g, is clearly equivalent to the restricted projection

N~ :E*L, — N7L,
being an isomorphism.

In general, there are topological obstructions preventing N ~|g+._, from being an
isomorphism. However, modulo finite dimensional spaces, the operator is always
invertible.

Theorem 3.3. Let Z be any strongly Lipschitz surface. Then the restricted projec-
tion N= : ETLy - N~Ly is a Fredholm operator of index 0, i.e. has closed range
and finite dimensional kernel and cokernel of equal dimensions. The same is true
for all eight restricted projections

N*:E*Ly — N'Ly, N~ :E*L; —- N Ly,
E*:NfL, — E'Ly,, E :NFL, — E Lo
If 2 is a Lipschitz graph, then all these maps are isomorphisms.

The key ingredient in the proof is a Rellich type estimate. The strong Lipschitz
condition on Z, i.e. that X is locally the graph of a Lipschitz function, shows the
existence of a smooth vector field 6 which is transversal to 2, i.e. v(x),0(x) =c>0
for all x . Basic identities for the Cli ord and interior products show that

If?v,8 =|f?L(ve+6v) = fv,fo = —2v  f+vf, 0,

where f — f is the automorphism which negates k-vector fields with odd k. Thus
an application of Stokes’ theorem yields the following Rellich identity

2 - _ Lf f - E(d:
©) /2|f| v,0 dofy) = 2/E v f,fo do(y)+jZ:;//D+ F,&;E(0;0) dx,

forall f =F|y ETL,, and therefore the estimate f < N~ f + F | quppo). If
2 is a Lipschitz graph, we can choose 6 = —e,,, in which case the last term vanishes
and it follows that the restricted projection N~ : ETL, —» N~L, is injective and
has closed range. More generally, the map f — F in the last term in the estimate
can be shown to be compact, from which it follows that N~ : ETL, — N~L, has
finite dimensional null space and closed range. Finally the index of the restricted
projection can be shown to be zero through either a duality argument or the method
of continuity. For details we refer to [2].

As we shall make frequent reference to it, let us state the well known method of
continuity.
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Theorem 3.4 (Method of continuity). Let X and Y be Banach spaces, and assume
that Ty : X > Y, A [0,1], is a family of bounded operators depending continuously
on A. If T are all semi-Fredholm operators, i.e. has closed range and finite dimen-
sional null space, then the index, i.e. dim(Y/R(T))) — dim N(T,), of all operators
Ta are equal.

Another operator in L,(Z) of importance to us, besides E* and N*, is the fol-
lowing unbounded first order di erential operator I".

Definition 3.5. Let Z be a strongly Lipschitz surface. Denote by I' the unique
closed operator in L,(Z) with dense domain D(I') L,(%) and the following action.
HHf=Ff_ +f_=F,|x+F_|x ETL, E™L, inthe Hardy space splitting,
then I acts by exterior (= — interior) di erentiation on the monogenic fields
F*in D* as
M = (dF)ls + (dF)|s = (F3F )|z + (=6F)ls.

(i) Iff=f +vaf, NTL, N~L, in the tangential/normal splitting, where
f,,f, NTL,, then I' acts by tangential exterior and interior di erentiation
on the two parts respectively as

M= dgfl + VA (621:2),

where dy, and 3y, denote the intrinsic tangential exterior and interior di er-
entiation operators on the surface Z.

Recall that a bilipschitz parametrization p : R"! - 5, locally around a point
y 2, induces a pullback p*, mapping tangential multivector fields N*L, to
L,(R""%; R"™1). Exterior di erentiation commutes with this pullback, i.e. dxf =
(p*) " 'dr~—1p*f. Dual to this, a reduced pushforward p, in the terminology of [3],
intertwines dy; and O0gn—1.

For Definition to make sense, one needs to show that the operators in (i) and
(i) coincide. This is a consequence of the following proposition.

Proposition 3.6. The following intertwining relations for exterior and interior dif-
ferentiation operators hold.

() IfU : D* -~ R" and N,(U),N,(dU) Ly(X), then NTU|y,  D(ds) and
r(N+U|2) = dz(N+U|2) = N+(dU|Z) ]fU - DT o R" and N*(U),
N.(QU) Ly(X), thenv aU|y  D(@s) and T(N“Ulsg) =V A ds(v aU]|g) =
N~-(0U|x).

(i) Ifh  NTLy, dsh  Ly(X) and x / Z, then

d / E(y — x)v(y)h(y) do(y) = / E(y — x)v(y)(@dsh)(y) do(y).
b)) >
Ifh N7Ly, 0s(voh) Ly(X) and x / %, then

d / E(y — x)v(y)h(y) do(y) = / E(y — XV £ 35(v 5 M)Y) do@y).
> >

The trace result N*(dU|s) = dss(NTU|x) in (i) is a special case of the fundamental
fact that the exterior di erentiation and pullbacks commute. Indeed, ifi: 3> - R"
denotes inclusion, then N*U|y = i*(U). The trace result N~ (dU|x) = v A dx(V 1
Ul|s) can then be obtained by Hodge star duality. For more details of the proof of
Proposition [3.8], we refer to [2, Proposition 4.10] and [3, Proposition 6.2.5].
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The usefulness and relevance of the operator I" to this paper, is that it is closely
related to the decomposition (8), as the following proposition shows.

Proposition 3.7. The operator I relates to the splitting of R" into homogeneous
k-vectors as follows.
) Ifh  Ly(Z; %) and T(NTh) =0, then (C*h)se =0. Ifh  Lo(Z; %) and
F(N~h) =0, then (C*h)x_y = 0. Thus, ifh Ly(Z; *¥) and Th =0, then
C*h is a k-vector field.
(i) For a monogenic field F = ZE:O Fx in DT, i.e. (d+3)F = 0, where Fy :
D* - KR", the following are equivalent.
— All homogeneous parts Fx of F are monogenic, i.e. (d+ d)Fx =0.
— F is two-sided monogenic, i.e. DF =0=FD, where FD := ZF:1(ajF)ej~
— F satisfies dF = dF = 0.

The result (i) shows that I governs the o -diagonal mapping of the Cauchy in-
tegral, i.e. the first and last terms in (€). Indeed, an integration by parts rewrites
these terms as single layer potentials

‘éEW—@AWWAMWmMO=éﬁ@—XWWWﬂWW»MW% x /3,
LEw—mewymw»mwr:—é¢w—mwa¢mwmdw, x /%,

where ®(x) denotes the fundamental solution for the Laplace operator and E(X) =
®(x). For proof of Proposition [3.7], we refer to [2, Lemma 4.13, Proposition 4.5].
Since I" acts by exterior and interior di erentiation, it is clear that > = 0, or
more precisely R(I")  N(I"). We have inclusions of function spaces

LX) L' L& LG,

where LR(Z) := R(I"), LY(Z) := N(") and L2(Z) := D(I"). Here LY (X) is always a
closed subspace of L,(=) and LD (Z) is always a Hilbert space densely embedded in
Lo(Z). The domain L2 (Z) is equipped with the graph norm f 3 := f 2+ f 2
which makes it a Hilbert space. The range L}(Z) is equipped with the range norm

fZ=inf{lTuz+ ui;u D®N),Tu=f}

which makes it a Hilbert space. The properties of the range L}(Z) depends on the
surface Z, as the following lemma shows.

Lemma 3.8. If £ is an unbounded Lipschitz graph, then LR(Z) is dense and not
closed in LN (Z). IfZ is a bounded Lipschitz surface, then LR(Z) is a closed subspace
of LN(Z) of finite codimension. In particular, if DT is Lipschitz diffeomorphic to
the unit ball, then the codimension is 4 and

LR(Z) = {f w@nn=n=/

2
where f © = —  XR" denotes the K-vector part of F.

vaf,_do = / v 4 fido = 0},
b))

Proof. Since N*L, and N ~L, are invariant under I, we may consider tangential and
normal multivector fields separately. Moreover, the two operators d and  acting in
R" satisfy

0(Fen) = (dF)en,
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and taking the normal part of the trace of this identity, Proposition[3.6(i) shows that
I(fen) = (I'f)ey for all tangential f N*L,. Thus the actions of ' on N*L, and
N L, are similar, and it su ces to consider I' = dy, acting on tangential multivector
field. Here the stated results are well known facts from de Rham cohomology. [

Instead of working with the projections E* and N ¥, it is often convenient to work
with the associated reflection operators E := E* —E~ and N := N* — N, where

E2 = N2 = I, which explains the naming. Here E is the principal value Cauchy
singular integral from Theorem and
Nf = vfv

is the operator which reflects a multivector field across . Following the boundary
equation method developed in [3, [4], we shall make use of the rotation operator

ENF(X) = p.v. / E(y — x)F)v(y)do(y).

The important connection between EN and the restricted projections above, is that
| +EN =2(E"NT+EN), N(I +EN)N =2(NTET+N"E"),
| —EN=2(E"N-+E"NT), N(I —EN)N =2(NTE- +N"E™).

For example, this shows that | + EN is the direct sum of the restricted projections
E*:N'L, - EfL,and E- : N"L, - E~L,. Thus, in order to prove that all
eight restricted projections are Fredholm operators, it su ces to prove that the two
operators | = EN are Fredholm operators on the full space L,(Z; ). We record
the following generalization of Theorem [3.3, which was proved in [2, Theorem 4.15]
through Rellich estimates involving a pair of monogenic fields F* : D* . R" and
the method of continuity.

Theorem 3.9. Let Z be a strongly Lipschitz surface. Then A+EN : Ly(Z) - Ly(X)
is a Fredholm operator with index zero for all A R (and more generally in a double
sector around the real axis).

The last result we shall need is the following analogue of Theorem [3.3] for the
subspaces LR(Z), LN(Z) and L2 (Z).

Theorem 3.10. All four projections E* and N* leave each of the subspaces LR(Z),
LN(Z) and L2 () invariant and act boundedly in them. All eight restricted projec-
tions

NT:E*fL¥ — NTLX, N~ :E*LX¥— N7L,

ET:N*LY — E'LY, E :N¥Ly— E L}
are Fredholm operators, for X = R,N, D. All eight maps are injective when X = R,
i.e. when acting in the range LR(Z), for all strongly Lipschitz surfaces Z.

Proof of Theorem[3.10. That E* and N* act boundedly in all three subspaces is
clear from (i) and (ii) in Definition .5 As noted above, the Fredholm property of
all eight restricted projections will follow if we prove that 1 = EN are Fredholm
operators on L3(Z).

(1) Fredholmness of the operators acting in LY (Z) and L2 (Z) follows from The-
orem and the method of continuity. For details, we refer to [2, Theorem 4.15]
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where it was shown that | = EN are Fredholm operators with index zero on L,(X),
LP(Z) and LY (Z).

To show that I£EN are Fredholm operators on L} (Z), note that this is immediate
from Lemma 3.8 and the result for LY () when X is bounded. In case of a Lipschitz
graph, consider the commutative diagram

0——LY (D)—~LP(X)——~LE(Z)—0
I+EN I+EN I+EN
0——LY (£)—~LP(X)——~LE(Z)—0.

Note that the rows are exact, i.e. the inclusion map i is injective, I" is surjective
and N(IN) = R@i) = LY
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Then there are unique Cauchy type harmonic conjugates V; : D — K2R" and

Vo :D = K2ZRM such that
N.(Vi) 2+ N.(V2) 2 < N,(U) 2+ N,(dU) ,+ N,(U) .

Y

Before the proof of the theorem, we make some remarks. In the scalar case, we
could apply the known results from Theorem on L,-invertibility of the classical
double layer potential operator to prove existence and uniqueness of Cauchy type
conjugate functions in Theorem [Z4. For k-vector fields, 1 < k < n—1, Theorem
is no longer available. In particular, we do not obtain any Ly-results for p > 2, since
the atomic estimates in the proof of Theorem in an essential way use that the
equation is scalar. Instead, we make use of a natural L,-based boundary function
space, L2 (Z), of mixed 0 and 1 order regularity. The key observation is that both
dU and 86U are (two-sided) monogenic when U is a two-sided harmonic k-vector
field. Thus, in order to apply the well established L,-theory for BVPs, we need to
require that N, (U), N,(dU) and N, (6U) belong to L.

Just like in the scalar case, the Cauchy type harmonic conjugate functions to a k-
vector field U can be calculated using a generalized double layer potential operator.
Indeed, according to (@), the Cauchy integral maps

(CH)iy

h———U

Va

(Ci)k72 Vl-

Thus, we need to solve for h in the generalized double layer potential equation
(C*h), = U.

Corollary 4.2. Let DT R" be a Lipschitz graph, interior or exterior domain, and
let 1 <k <n—1. Then the range and null space of (C*)x, with domain LD (Z; ¥),
are

R((C%)) ={U :D* -~ *R"; 38dU =0 =ddU, N,(U),N,(3U),N.(dU) Lo(X)}
N(C*)) ={Fls ; F: DT - *R"dF =0=38F,N.(F) Lx(2)},
with the same modifications of R((C*)k) as in Theorem[].1 when D* is an exterior

domain and when DT is an interior domain and K = 1,n — 1, and where F - 0
when X — oo when DT is an exterior domain and F N((C*)y). The operator

(CH: LP(Z; )/ N(CH) —— RI(CH)

is an isomorphism. Thus, if U  R((C*)y), its Cauchy type harmonic conjugates
are

Vi = (CH(CM) U2 and Vo = (CT((CH) 'U)ksa.

Proof. 1f U R((CF)y), i.e. if U = (C*h) for some dipole density h  LP(Z; ),
then it follows that U is harmonic and N, (U), N,(dU), N.(dU) L,(Z). ButddU =
—33(C*h),,» = 0, so U is in fact two-sided harmonic. The converse inclusion follows
from the existence proof of Theorem 4.1 below.
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Clearly, if F : DT —~ KR" satisfies dF = 0 = 8F and N,(F) L.(X), then
F|sx belong to the Hardy subspace for the complementary domain DF. In partic-
ular C*(F|y) = 0 and F|ly,  N((C*)y). The converse inclusion follows from the
uniqueness proof of Theorem [4.1] below. O

Remark 4.3. According to (7)), the classical double layer potential is the compres-
sion of the Cauchy integral to the subspace of scalar valued functions. In Corol-
lary [4.2] identifying a harmonic function with its boundary trace, we have general-
ized this by compressing the Cauchy integral/Hardy projection E* to the operator
(E*)k, acting in the subspace of k-vector fields. Other useful compressions of the
Cauchy integral use instead the subspaces of tangential or normal multivector fields
N*L,(X), which are relevant for BVPs. For example, consider the BVP in Exam-
ple consisting in finding F : D* - R" satisfying the Hodge-Dirac equation,
with a prescribed normal part g of the trace f = F|x. Equivalently, we look for
a Hardy function f ETL, satisfying N~-f = g. Making the ansatz f = E*h,
with h  N~L,, we obtain instead a double layer type equation N"E*h = g in
the subspace N~L,. As shown in [4], the well posedness of the BVP is essentially
equivalent to the compressed Cauchy integral N~“E*|y-., being an isomorphism.
We note that these types of compressions to N*L, in general have better proper-
ties than the compressions (E*)i|., s used in Corollary B2, as N*E*|y=., are
Fredholm operators.

Uniqueness proof of Theorem [{.1. Assumethath Ly(Z; K)issuch that its Cauchy
extension satisfies U = (C*h), = 0. We aim to prove thath LY (Z) and C*h =0,
so that the Cauchy type harmonic conjugates V, = (C*h)x_, and V5, = (C*h),»
vanish.

Define monogenic fields

U109 := CHN M0 = = | EG=00() 5hy) do(y).
7.0 := CHN() = = | E=00() 2 h(y) doty),

for x D%, so that V; = (V))k_a, Vo = (V2)k+2 and (V) + (V2)k =U =0hby
assumption. It follows that dV, = ((d +6)V2)k+3 =0and dV, = _d(Vg)k = d(Vl)i< =
((d+ 6)V1)k+1 = 0. Thus V, and therefore V, are two-sided monogenic and

(10) M(EEN*h) = 0.

Similarly, it follows that F(E*N~—h) = 0.
We first show that (I0) implies that h, := N*h has regularity h; L2(Z). Note
that E*h; = ;(1 £ E)h; = 1(1 = EN)h;, and consider the commutative diagram

LP(2)=LD(5)

i i
I+EN

Lo(2)——=L2(2),
where the inclusion i is dense. Moreover, as explained in the proof of Theorem [3.101
the method of continuity shows that | EN are Fredholm operators with index zero
on both L,(Z) and L2(Z). Since (1 £EN)h; LP(X), a general regularity theorem
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for Fredholm operators [2, Proposition 4.16] shows that h;  LP(Z). Similarly,
N-h L2(2).

We have shown that EX(TN+th) =0 =E*('N~h), i.e. TNtTh EFLR n NTLR
and TN~h  EFLR n N~LR. Thus Theorem B.10 shows that F((NTh) = (N~h) =
0, so that h LN(Z). According to Proposition 3.7(i), we have V;, =V, = 0 and
thus C*h = 0. O

Ezistence proof of Theorem[].1. Assume that U : D - KR" is twosided harmonic
in the sense that 3dU = 0 = ddU, where N, (U), N,.(dU),N,(dU) Ly(X). IfD isan
exterior domain, also assume that U,dU,dU — 0 when X — oo. If D is an interior
domain, also assume that U =0ifk =1anddU =0ifk=n—1.

We aim to construct V, : D —~ X2R"andV,:D - **2R" and a dipole density
h LP(Z; *)such that C*th =V, +U +V, and

NL(V1) 2+ No(Vs) o+ h b < Nu(U) 5+ N.(dU) »+ N.@GU) ».

(1) We first construct a tangential k-vector field h, NTLP(Z; ) such that
dU = d(C*h,). To this end, consider the singular integral equation

N+tE*h, = N*(dU]y).

From the assumption, dU is a monogenic field, and Proposition [3.6(i) shows that
N*(dU|g) LR(Z). We claim that the compressed Cauchy integral

NTE®:NTLR(EZ) — NTLR(Z)
is an isomorphism. Since it is the composition of E* : NTLR(Z) - E*LR(Y)
and N : EXLR(Z) - NTLR(Z), it follows from Theorem 310 that it is an injec-

tive Fredholm operator. Using the operator algebra developed for boundary value
problems in [4], we see that

AN —4(INTETNT+N"E"N") = (AN)2 = (N + E)?
=(A+1+EN)NA—1—EN)N,

AM—4(NTE"NT+N"E"N") = (AN)?— (N — E)?
=(A+1—EN)NA—1+EN)N.

The right hand sides are seen to be Fredholm operators in LR(Z) for all real A as in
part (1) in the proof of Theorem 310 Applying the left hand sidesto f NTLR(Z),
so that N—f =0, shows that A2 —=NTE* : NTLR(Z) -~ NTLR(Z) are all Fredholm
operators. Since this operator clearly is invertible for large enough A, the method of
continuity shows that NTE* : NTLR(Z) — NTLR(Z) has index zero, and therefore
is surjective, since it has been shown to be injective.

Solving the equation, we obtain a unique h, N7*LR(Z) such that

N*(E*h, — (dU)|s) = 0,
where we verify that (dU)[s E*LY(Z). It is here we need the topological assump-
tion on =. If < is an unbounded graph, then N-L, n E*L, = {0}. On the other
hand, if D" is Lipschitz di eomorphic to the unit ball and 1 < k < n — 3, then
(dU)]s  E*LR(Z) according to Lemma38 Ifk=n—1thendU =0 E*L}(S)
by assumption. Finally, if k = n — 2 then Stokes’ theorem shows that

/ v A (dU)do =+ d(du)dx =0
2

D=*
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since d? = 0. (Note that Stokes’ theorem is applicable in D~ since [dU| < [x|™" as
X - 00) Thus E*h,—(dU)|z E*LRnN~LR, which equals {0} by Theorem 310
In either case, we conclude that

dU = d(C*h,), for some hy, NTL2(),

such that hy = Fhy and N, (U) 5+ N,(dU) > hy r= hy o+ hy ».
A similar argument proves that

3U = 8(C*hy), for some h, N™LP(X),

such that h1 9 + rh1 2 S N*(U) 9 + N*(6U) 2. _
(2) To construct Cauchy type harmonic conjugates V; and Vs, write V; := C*h;,
i=1,2. Then

d(U — (V1)k — (Vo)) =dU —0—dU =0,
5(U — (V)i — (Vo)) =38U —3U —0 =0,
so that (U — (V1)k — (Vo) )l EXLN. Thus, defining a dipole density
hi=U-Vk— (s +h+hy LDE; 9,
Vi = (V1)k_s and Vs 1= (Vo)kso gives
CEth=U— (V)= (Vodk +V; +Vo =V, + U + V.
Since N.(V1) 2+ N.(V2) 2 S N.(U) o+ hy 5+ hy o $ N.(U) o+ N.(dU) o+

2 S

N.GU) 2and hp < (U=(V)=(V)lz 2+ hip+ hy p S N(U) o+
N.(dU) 5, + N,(dU) », the proof of Theorem [4.1] is complete. O

5. OTHER TYPES OF HARMONIC CONJUGATES

Recall from the discussion in the introduction thatif U : D -~ ¥R" is a two-sided
harmonic k-vector field, two fields V; : D — K 2RMand V,: D - Kk*2R"™ are said
to be conjugate to U if (d +93)(V; + U +V,) = 0. As noted, further conditions
need to be imposed on Vy, V, for this problem to be well-posed, i.e. for V; to be
(essentially) unique. Theorems [Z4] and 4.1 show that the problem becomes well
posed if V; are required to be Cauchy type harmonic conjugates. The following
proposition expresses this condition as a boundary condition.

Proposition 5.1. Assume thatV; and Vs are harmonic conjugates toU in D = D™,
with N,(U), N.(V1),N.(V2)  Lo(Z). Then they are of Cauchy type if and only if
there exists U™ : D™ - KR"™ with harmonic conjugates V;” : D~ - K2R" and
V, :D™ o KZRM 4n D7, with NL(U7), NL (V) NL(Vy ) Lyo(2) (and decay at

infinity when D~ is an exterior domain), such that
VllZ + Vl_lz =0 and Vglz + V2_|E =0.

Proof. Recall that by definition, V; are of Cauchy type if there exists h: ¥~ - KR"
such that C*h =V; +U +V,. In this case, V,;” +U~ +V, := C~h has the required
properties since ETh + E~h = h. Conversely, if V,” + U~ +V, has the required
properties, let h :=U|g +U " |s = (Vi +U +Vy)[s +(V; +U"+V,)|x: 2 - KR",
Then Cth=V; +U +V,. 0
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Note that since Cauchy type conjugates are defined in terms of the Cauchy in-
tegral, which concerns the interplay between monogenic fields in D™ and D, the
boundary condition above is a transmission problem, i.e. a jump relation between
pairs of monogenic fields in D*.

We end this paper with a construction of harmonic conjugates which di er from
the Cauchy type ones in general. To avoid technicalities, we shall only consider
interior domains, i.e. D is assumed to be Lipschitz di eomorphic to the unit ball.
(Unlike the situation for the Cauchy type conjugates, this second construction does
not involve the complementary domain D~.)

Consider the exterior and interior derivative operators d and 6 in (). These are

N
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are injective (except when k = 1,n — 1 respectively) and surjective unbounded
operators. This follows from [5, Theorem 1.3] together with Poincaré’s lemma. Here
N(T; )= N(T) n Lo(D; 9).

Definition 5.3. Given a two-sided harmonic field U : D* - kR", i.e. 8dU =0 =
ddU, we say that V,; : D -~ *2R"and V,:D - K*2R" are Hodge type harmonic
congugates to U if (d+9d)(V; +U +V,)=0and ifviVi|gy =0and v aVy|y =0.

Our main result in this section is the following theorem, which shows that the
boundary condition imposed on Hodge type harmonic conjugates yields a well posed
problem.

Theorem 5.4. Assume that D R" is Lipschitz diffeomorphic to the unit ball, let
Osk=snandletU LyD; X be such that dU,8U Lo(D; ) and ddU =0 =
doU. Ifk = n—1, assume that dU = 0, and if K = 1 assume that dU = 0. Then
there exists Hodge type harmonic conjugates V1,Vy to U in D such that Vi Lyp) S

U o) and Vo 1,y S dU ). The conjugates are unique, except if K = 2,

when V is unique modulo constants, and if K = n — 2, when Vy is unique modulo
constants.

Proof. Apply Proposition 5.2(i) to F = U, and Proposition 5.2(ii) to F =dU. O

Remark 5.5. (1) In the complex plane, when n = 2 and k = 0, harmonic con-
jugates in general are unique modulo constants. In particular Hodge type con-
jugates coincide with Cauchy type conjugates, modulo constants. Note that all
V =V,:D - 2R?are normal on the boundary, since v AV |z = 0.

(2) For general domains D, Cauchy type harmonic conjugates and Hodge type
conjugates will not coincide in general when n = 3, not even when k = 0. To see
this, note that there is no reason for the Cauchy type conjugate

V(x)= /Z(E(y —x) Avy)h)da(y), h:Z-- °R"

to satisfy v A V|, = 0. However, they do coincide, for all 0 < k < n, when D is a
sphere. To see this for the unit sphere, note that the normal vector v(y) in this case
ISy, SO

Vs (X) :/ZE(y—X)/\V(y)/\h(y) da(y) = —XAL%

is normal on . Similarly, the Cauchy type conjugate V; is seen to be tangential
on X in this case. Hence they coincide with the Hodge conjugates by uniqueness in
Theorem (modulo constants when k =2, n — 2).
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