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With this notation, if f is a tempered distribution, then suppf ⊂ [0,∞) if and only
if 〈f, φ〉 = 0 for all φ ∈ Φ−. Since there is an isometric isomorphism between their
boundary values and the functions in the Hardy spaces, we identify the Hardy spaces
with their boundary values, denoting the latter by Hp

+(R) and Hp
−(R), respectively.

The following theorem is established in [15], where for the partial range p ∈ [1, 2]
the result was previously known.

Theorem 1.1. If f is the tempered distribution arising from the boundary value of
a function in Hp(C+), 1 ≤ p ≤ ∞, then

〈f̂ , φ〉 = 0, for all φ ∈ Φ−.

As the main result of the present paper, we will prove in §2 the following converse
result to Theorem 1.1.

Theorem 1.2. For 1 ≤ p ≤ ∞, if f ∈ Lp(R) and 〈f̂ , φ〉 = 0 for all φ ∈ Φ−, then
f is the boundary value of a function in Hp(C+).

We thus obtain a characterization of the Hardy spaces in terms of the Fourier
spectrum of their boundary values. Again, at least for the range 2 < p ≤ ∞ the
result is new. The proofs for the cases p = 1 and p = ∞ are subtle (see §2). As a
direct consequence of Theorems 1.1 and 1.2 we have

Theorem 1.3. Hp(R), 1 ≤ p ≤ ∞, is identical to the Banach subspace of Lp(R) of
the functions of non-negative spectrum.

Now we justify Hilbert transformations for Lp(R) functions, in particular for
p = ∞. Let T be a real-valued distribution and u its unique harmonic representa-
tion in the upper-half complex plane; then u has a harmonic conjugate, v, unique
up to additive constants. It is proved that v is a harmonic representation of a
distribution S. Then S is defined to be a Hilbert transform of T that is unique
up to additive constants. The above definition is generalized to complex-valued
distributions by linearity (see, for instance, [10], [9], [15]; also [11]). If f ∈ L∞(R),
then the distributional Hf coincides with the Hilbert transform of f defined by
using the modified Hilbert kernel resulting in a BMO function, as shown in [5].

If f ∈ Lp(R), 1 ≤ p ≤ ∞, then f is the non-tangential boundary value of a
function in the Hardy space Hp(C+) if and only if Hf = −if, where H is the
Hilbert transformation on the line ([15]). For p = ∞ this relation holds in the
distribution sense and modulo constants. For f ∈ Lp(R), 1 ≤ p < ∞, the usual
Hilbert transform Hf as a principal-value Cauchy singular integral is selected and
thus is uniquely defined. We call such defined Hf the conventional branch of the
Hilbert transform, or the conventional Hilbert transform of f ∈ Hp(C+). Given a
function f ∈ Lp(R), 1 ≤ p < ∞, using the decomposition f = f+ + f− where
f+ and f− are, respectively, the boundary value of a function in the Hardy space
for the upper-half plane and that of one for the lower-half plane, we define Hf =
−i(f+−f−) to be the conventional Hilbert transform of f. This definition coincides
with the one defined by using a singular Cauchy integral. The above definition
reminds us of the classical Fourier multiplier −i sgn ξ for Hilbert transformations.
Below we proceed to define the conventional branch of the Hilbert transform for a
closed subspace of f ∈ L∞.

Consider the direct sum space H∞
+ + H∞

− . It is a proper and closed subspace
of L∞(R) (see [6]). A function f in such a space has a unique decomposition
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up to additive constants; that is, if f = f+
1 + f−

1 = f+
2 + f−

2 , f±
k ∈ H∞

± , then
f+

1 − f+
2 = f−

2 − f−
1 = constant. By finding the Fourier transform of f in the

distribution sense, we can assert the point mass cfδ contained in f̂ that gives rise to
the canonical decomposition f = f+ + cf +f−, where f± ∈ H∞

± , supp f̂+ ⊂ (0,∞),
supp f̂− ⊂ (−∞, 0). We define the type-1 conventional Hilbert transform of f to be
Hf = −i(f+ + cf − f−) and the type-2 conventional Hilbert transform of f to be
Hf = −i(f+ − cf − f−). As an example, taking the simplest case f = 1 = 1 + i0,
we have f± = 0, cf = 1, and the type-1 conventional Hilbert transform branch
H1 = −i. Similarly, the type-2 Hilbert transform branch is H1 = i.

The above may be summarized into the following:

Definition 1.4. Let f ∈ Lp(R), 1 ≤ p < ∞, and let f = f+ + f− be the unique
decomposition of f into the direct sum Hp

+(R) + Hp
−(R). The conventional Hilbert

transform of f is defined to be Hf = −i(f+ − f−).

Definition 1.5. Let f ∈ H∞
+ (R) + H∞

− (R) with the canonical decomposition f =
f+ + cf + f−, where f+ ∈ H∞

+ (R), f− ∈ H∞
− (R), suppf̂+ ⊂ (0,∞), suppf̂− ⊂

(−∞, 0), and cf is a complex constant. Then the type-1 conventional Hilbert
transform of f is Hf = −i(f+ + cf − f−); and the type-2 conventional Hilbert
transform of f is Hf = −i(f+ − cf − f−).

Based on the above definitions we state the boundary characterization by Hilbert
transformations of the spaces Hp(C±).

Theorem 1.6. For 1 ≤ p ≤ ∞, a function f ∈ Lp(R) is the boundary value of
one in Hp(C±) if and only if H(f) = ∓if, where the Hilbert transform is taken
to be the conventional branch; and, for the case p = ∞, the conventional Hilbert
transform Hf is of type 1 or type 2, depending on f ∈ H∞(C+) or f ∈ H∞(C−),
respectively.

As an application of the main theorem, Theorem 1.2, we will establish in §3
the Lp-generalizations of the Bedrosian Theorem ([1]). There has been recent and
growing interest in the Bedrosian identity due to its applications to adaptive decom-
position of functions. The latter is a generalization of Fourier series expansion valid
for functions defined in both compact and infinite intervals. The study projects cru-
cial impacts on both theoretical and computational signal analysis. It is this trend
of study that motivated this work ([1], [2], [3], [12], [4], [8], [13], [14], [15], [16]). In
§3 we will include a short introduction to the main aspect of this study. We obtain
the following:

Theorem 1.7. Suppose f ∈ Lp(R), g ∈ Lq(R), 1/p + 1/q ≤ 1, 1 ≤ p, q ≤ ∞. If for
some σ > 0, suppf̂ ⊂ [−σ, σ] and supp ĝ ⊂ R \ [−σ, σ], then

H(fg) = fHg,

where the Hilbert transforms are taken to be the conventional branches.

We also have

Theorem 1.8. Suppose f ∈ Lp(R) and g ∈ Lq(R), 1/p + 1/q ≤ 1, 1 ≤ p, q ≤ ∞.

If supp f̂ ⊆ [0,∞), supp ĝ ⊆ [0,∞), then

H(fg) = fHg,
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where the Hilbert transforms are taken to be the conventional branches and of type
1, if applicable.

And

Theorem 1.9. Suppose f ∈ Lp(R) and g ∈ Lq(R), 1/p + 1/q ≤ 1, 1 ≤ p, q ≤ ∞.

If supp f̂ ⊆ (−∞, 0], supp ĝ ⊆ (−∞, 0], then

H(fg) = fHg,

where the Hilbert transforms are taken to be the conventional branches and of type
2, if applicable.

The proof of Theorem 1.7 with the shifting factor ei2παx = 1 offers the second
and third versions of the Bedrosian theorem for Lp as cited in Theorem 1.8 and
Theorem 1.9. In fact, it is these simple cases that motivate the Hardy space study
and the generalizations.

Thanks are due to Hans G. Feichtinger for beneficial discussions based on an
earlier manuscript of the paper. In particular, his question motivated us to re-
formulate the results generalizing the Bedrosian Theorem through introducing the
conventional Hilbert transformations.

2. Proof of Theorem 1.2

The main effort of the proof lies in the boundary cases p = 1 and p = ∞. Since
the distribution setting involves dual spaces and the dual space of H1 is BMO,
the proof is technically dependent on some fundamental developments of harmonic
analysis in [5] and [18].

We will frequently refer to Plemelj’s formula ([6]): For f ∈ Lp(R), 1 ≤ p < ∞,
and its Cauchy integral

F (x + iy) =
1

2πi

∫ ∞

−∞

f(t)
t − (x + iy)

, ±y > 0,

there holds the relation

lim
±y→0+

F (x + iy) = ±1
2
f(x) + i

1
2
Hf(x), a.e. x.

It is well known that if f ∈ Hp(C±), 1 ≤ p < ∞, then f is given by the above
Cauchy integral.

We will make use of the modified Hardy spaces H̃p
±(R), 1 ≤ p ≤ ∞, defined as

H̃p
±(R) := {g : There exists a complex-valued f ∈ Lp(R) such that g = f±iHf}.

Due to Plemelj’s formula and the Lp(R) boundedness of Hilbert transformation for
1 < p < ∞, the spaces H̃p

±(R) coincide with Hp
±(R) in the corresponding range of p.

For p = 1 and p = ∞, the respective H̃p
±(R) are truly larger than the corresponding

Hp
±(R). Indeed, for instance, H̃1

+(R) is the boundary value of a Cauchy integral with
boundary data in L1(R), while H1

+(R) is the boundary value of a Cauchy integral
with boundary data in H1

+(R). Since H1
+(R) is a proper subspace of L1(R), we

conclude that H1
+(R) is a proper subspace of H̃1

+(R).
For the case p = ∞, if f ∈ L∞(R), then Hf is in BMO(R) (see, for instance, [5]);

while, if f is in H∞(C+), then both its boundary value f and its Hilbert transform
Hf are in L∞(R). So, H∞

+ (R) is a proper subspace of H̃∞
+ (R). Below we will write
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Hp
+(R) as Hp(R) and H̃p

+(R) as H̃p(R) for simplicity, and sometimes even drop R.

Theory for Hp
−(R) and H̃p

−(R) is similar.
Below we first extend Theorem 1.1 to the modified Hardy space.

Theorem 2.1. If f is the tempered distribution arising from a function in H̃p(R),
1 ≤ p ≤ ∞, then

〈f̂ , φ〉 = 0, for all φ ∈ Φ−.

We will make use of Calderón-Zygmund decomposition (see page 17 of [18]). For
λ > 0, the Calderón-Zygmund decomposition of f ∈ L1(R) at the height λ exhibits

(2.1) f = g + b = g +
∑

k

bk,

where
(i) ‖g‖2

2 ≤ Cλ‖f‖L1 ;
(ii) there exists a sequence of pairwise disjoint dyadic intervals Ik so that the

support of each bk is contained in Ik,∫
R

bk(t)dt = 0 and
∫

R

|bk(t)|dt ≤ Cλ|Ik|;

(iii)
∑
k

|Ik| ≤ Cλ−1‖f‖L1 .

The Calderón-Zygmund decomposition leads to the following result.

Lemma 2.2. Let S denote the Schwartz class on R. If φ ∈ S and f ∈ L1(R), then

(2.2)
∫

R

(Hf)(t)φ(t)dt = −
∫

R

f(t)(Hφ)(t)dt.

Proof. The Calderón-Zygmund decomposition of f ∈ L1(R) has the expansion
(2.1). Since the function g in (2.1) is in L2(R), the “anti-Hermitian” character
of the Hilbert transform gives∫

R

(Hg)(t)φ(t)dt = −
∫

R

g(t)(Hφ)(t)dt, ∀φ ∈ S,(2.3)

by the Fourier transform.
For the function b in (2.1), we observe that it belongs to the Hardy space Hp(R)

for 1/2 < p < 1. Owing to (ii) and (iii), this is obvious from the decomposition of
b into a sum of the Hp atoms (see Chapter 3 of [18]),

b(t) =
∑

k

bk(t) =
∑

k

µkak(t),

where µk = λ|Ik|1/p, ak = [λ|Ik|1/p]−1bk, and {ak} is a collection of Hp atoms
satisfying

∑
|µk|p ≤ Cλp−1‖f‖L1 .

Since the dual of Hp is the space Λα(R) for α = p−1 − 1, and both φ and Hφ
are in Λα(R), the duality argument shows that∫

R

(Hb)(t)φ(t)dt = −
∫

R

b(t)(Hφ)(t)dt, ∀φ ∈ S.

This, combined with (2.3), implies the identity (2.2). �
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Proof of Theorem 2.1. We only need to prove the cases p = 1 and p = ∞, as the
cases 1 < p < ∞ are already included in Theorem 1.1.

For the case p = 1, let f+iHf belong to H̃1 with f ∈ L1. There exists a sequence
of functions fn ∈ L1 ∩ L2 such that fn → f in the L1 sense. This implies that
fn + iHfn converges to f + iHf in the weak-L1 sense. Since φ̂ ∈ L∞, it follows
from Lemma 2.2 that

(2.4) lim
n→∞

∫
(Hfn)(t)φ̂(t)dt =

∫
(Hf)(t)φ̂(t)dt.

Consequently, we have that if φ ∈ Φ−, then

(2.5) lim
n→∞

∫
(fn(t) + i(Hfn)(t))φ̂(t)dt =

∫
(f(t) + i(Hf)(t))φ̂(t)dt.

As a consequence of Theorem 1.1 for p = 2, the left-hand side of (2.5) for each n is
zero; hence the integral in the right-hand side also has zero value. This proves the
assertion for p = 1.

Next we consider the case p = ∞. Let f ∈ L∞. We need to show that for any
φ ∈ Φ−,

(2.6)
∫

R

(f(t) + i(Hf)(t))φ̂(t)dt = 0.

We first note that f + iHf is in BMO and φ̂ is in H1
+ and therefore the left-hand

side of (2.6) in the functional sense is well-defined. Since for f ∈ L∞ and φ̂ ∈ H1

there holds ∫
R

(Hf)(t)φ̂(t)dx = −
∫

R

f(t)(Hφ̂)(t)dt

(see page 146 of [5]), we have that∫
R

(f(t) + i(Hf)(t))φ̂(t)dt =
∫

R

f(t)((I − iH)φ̂)(t)dt.

The operator I − iH, however, annihilates functions in H1. This concludes the
theorem for p = ∞. The proof is complete. �

Proof of Theorem 1.2. Write f = f+ +f−, where f± = (1/2)(f ± iHf) ∈ H̃p(C±).
Now we show f− = 0. For any ϕ ∈ C∞

0 one can write ϕ = ϕ+ + ϕ0 + ϕ−, where
ϕ± ∈ Φ± and ϕ0 ∈ C∞

0 . Thus,

〈f̂−, ϕ〉 = 〈f̂−, ϕ+ + ϕ0 + ϕ−〉
= 〈f̂−, ϕ0 + ϕ−〉 (Theorem 2.1)

= 〈f̂−, ϕ0〉 + 〈f̂ − f̂+, ϕ−〉
= 〈f̂−, ϕ0〉 + 〈f̂ , ϕ−〉 − 〈f̂+, ϕ−〉
= 〈f̂−, ϕ0〉, (by assumption and Theorem 2.1).

This shows that f̂− is supported at the single point zero. Hence (see, for instance,
[7], 4.5, Chapter II),

f̂− =
N∑

k=0

ck

(
d

dx

)k

δ.
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Therefore, f− =
∑N

k=0 ck(ix)k. This implies that f− = 0 for 1 ≤ p < ∞ and
f− = c0 for p = ∞. In the latter case we obtain

f = f+ + c0.

Indeed, the decomposition f = f+ + f− in the case p = ∞ is unique modulo
constants.

Now, the assumption f ∈ Lp implies f+ = f ∈ Lp and, in particular, Hf ∈ Lp.
Since f = (1/2)(f + iHf), we have Hf = −if. Theorem 1.6 then implies that
f ∈ Hp, where 1 ≤ p ≤ ∞. �

3. Generalizations of the Bedrosian theorem

The Bedrosian theorem was originally presented in [1] in the following form:
Let f, g be complex-valued signals in L2(R) of a real variable. If f̂(ω) vanishes
for |ω| ≥ a and ĝ(ω) vanishes for |ω| ≤ a, where a is a positive number, or,
alternatively, if both f, g are analytic singles in the sense that supp f̂ ⊆ [0,∞) and
supp ĝ ⊆ [0,∞), then the Hilbert transform of the product of f and g fulfills the
relation

(3.1) H[fg] = fHg.

Below we include an introduction to adaptive decomposition of functions and its
relation to the Bedrosian identity.

In relation to the engineering development of the so called EMD algorithm ([3]),
there has been increasing interest in adaptive decomposition of functions into the
form

f(t) =
∞∑

k=1

ρk(t) cos θk(t),

where ρk ≥ 0 a.e., θ′k(t) ≥ 0 a.e., and ρk(t) cos θk(t) satisfies the Hilbert transform
relation

H(ρk cos θk)(t) = ρk(t) sin θk(t) a.e.

Each basic entry ρk(t) cos θk(t) that enjoys the three properties listed above is
called a mono-component ([16]). The non-negative requirement for ρk is basic, as
it is the amplitude of the entry. The non-negative requirement for the derivative
function θ′k amounts to requiring that each entry has non-negative frequency, in
accordance with its physics meaning. It is also called instantaneous frequency or
analytic instantaneous frequency by signal analysts. The final Hilbert transform
relation requires that each entry is the boundary value of an analytic function
in the upper-half complex plane. This is called, in physics, a physical realizable
signal. Fourier series form a particular case of this type of series, as each entry of
an cos nt and bn sin nt is a mono-component: Each entry of these may be written
in the amplitude-frequency form that enjoys the three properties. “Adaptive” in
our formulation means fastest convergence in a certain metric space. Adaptive
decomposition of this type has very good localization properties and is considered
to be ideal for signal analysis. The relevant literature may be found in [1], [2], [3],
[12], [4], [8], [13], [14], [15], [16] and their references. To achieve the goal of adaptive
decomposition we need to find a large pool of mono-components. It has been known
that the real parts of the boundary values of all starlike and p-starlike functions are
mono-components. One of the ways to construct mono-components is to start from
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a unimodular mono-component, of the form cos θ(t), where the function θ satisfies
the condition θ′(t) ≥ 0 a.e. and the relation

H(cos θ)(t) = sin θ(t).

Examples of unimodular mono-components of this type include the real parts of the
boundary values of Möbius transforms, further extending to finite Blaschke prod-
ucts ([13], [14], [15]). Now suppose that the Bedrosian Theorem may be extended
to the Lp cases and that ρ(t) and cos θ(t) satisfy the required assumptions; then

H(ρ cos θ)(t) = ρ(t)H(cos θ)(t) = ρ(t) sin θ(t).

Based on this procedure, and other generalizations of the Bedrosian Theorem as
well, a large number of mono-components have been constructed ([20]).

So far all studies of the Bedrosian identity have been based on the L2 formulation.
In engineering practice the identity is applied to the cases where f ∈ Lp(R) and
g ∈ L∞(R) without any mathematical justification. This gives an impetus to study
Lp generalizations of Bedrosian identity.

Now we turn to proving our Lp generalizations of the Bedrosian Theorem. We
first extend the translation property of the Fourier transform for L1(R) to tem-
pered distributions. In the following theorem we denote the function e−2πiat by
e−2πia(·), t ∈ R.

Theorem 3.1. Let T be a tempered distribution and supp T̂ ⊂ (A, B), where A, B
are in the generalized real number system. Then

supp(Te−2πiσ(·))∧ ⊂ (A + σ, B + σ).

Proof. Let ϕ ∈ C∞
0 be a test function; then

〈(Te−2πiσ(·))∧, ϕ〉 = 〈T, e−2πiσ(·)ϕ̂〉
= 〈T, [ϕ(· − σ)]∧〉
= 〈T̂ , ϕ(· − σ)〉.

Since supp ϕ(· − σ) ⊂ R\(A, B) if and only if supp ϕ ⊂ R\(A + σ, B + σ), we
conclude the theorem. �

We are now ready to give

Proof of Theorem 1.7. We first decompose g into g = g+ + g− so that supp ĝ+ ⊂
[β,∞) and supp ĝ− ⊂ (−∞,−β], where β > σ. If we can show

H(fg±) = fH(g±),

then the linearity of Hilbert transformation will imply that H(fg) = fHg. We
only prove the case for g+, as the case for g− is similar. Write fg+ = (fe−2πiαx)
· (e2πiαxg+) for any α in between σ and β. Since supp f̂ ⊂ [−σ, σ], from Theo-
rem 3.1 we have supp (fe−2πiα·)∧ ⊂ [0, +∞). By invoking Theorem 1.2, fe−2πiαx

is the boundary value of a function in Hp(C+). Since supp ĝ+ ⊂ [β,∞), from
Theorem 3.1, we have supp(e2πiα·g+)∧ ⊂ [0, +∞). Invoking Theorem 1.2 again,
e2πiαxg+ is the boundary value of a function in Hq(C+). When 1 < p, q < ∞ with
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