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Simple computation shows that the derivative of the phase function �a(t) satisfies

d

dt

�a(t)

2�
= 1

2�

1−|a|2
|ei�−a|2 = 1

2�

1−|a|2
1−2|a|cos(ta− t)+|a|2 >0

where a=|a|eita , and the last expression is the Poisson kernel on the circle at a (see [1]). This
positive-phase derivative property can be immediately extended to finite Blaschke products. In
fact, the phase function of a finite Blaschke product is the finite sum of the phase functions of the
composing Möbius transforms (see, for instance, [2]).

The phenomenon of positive-phase derivative property may also be seen in the simplest singular
inner functions case. Recall that a singular (or singular inner) function is given by the formula

S(z)=e
−∫ 2�

0
eit+z
eit−z

d�(t)

where d� is a positive regular Borel measure singular (orthogonal) to Lebesgue measure. The
simplest singular inner function is given by the point mass at a single point, say at t=0, that is
d�(t)=�0(t)dt , where �0 is the usual Dirac function. We have, in the case,

S(z)=e(z+1)/(z−1)

For z=eit , we have

S(eit )=ei�(t), �(t)=−cot
t

2

where

d

dt
�(t)= 1

2

1

sin2 t

2

>0, t �=0

If d� is a sum of a finite many of point masses, we have the same conclusion �′(t)>0 for all t’s
but those at which the point masses are placed. This phenomenon is also observed in [3].

Functions having this property are not necessarily to be unimodular. A family that possesses
global non-negative phase derivatives is the family of starlike mappings. Let � be a simply
connected open and starlike domain containing the point z=0 and bounded by a Jordan curve. Let
f :D→� be a conformal mapping with f (0)=0. By a famous theorem of Carathéodory (see [4])
the mapping f has a one-to-one continuous extension from D→�. Then f is a starlike mapping
about zero if and only if f ′(0) �=0, and

Re[z f ′(z)/ f (z)]>0 for z∈D

(see, for instance, [5]). The mapping f :D→� induces a natural parameterization for the boundary

f (eit )=�(t)ei�(t), �(t)>0

If both f and f ′ are in the Hardy H1(D) space, then f (eit ) is of bounded variation, and

d

dt
�(t)�0 a.e. t ∈[0,2�)

(see, for instance, [1, p. 93, 8(b)]).
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In this note, we restrict ourself to the function classes involved in the Nevanlinna canonical
factorization theorem: A function f is in the Nevanlinna class, N, if and only if f is of the form

f =CFBS1/S2, |C |=1

where B is a Blaschke product, S1 and S2 are singular functions, F is an outer function and C is
a constant. Except for the choice of the constant C , the decomposition is unique. Functions in the
Nevanlinna class with S2 =1 constitute a class N+. A function f is in the Hardy H p(D),0<p�∞,
if and only if f ∈N+ and its outer function part, F , is in H p(D).

A function f is an outer function in D if and only if f has the form

f (z)=Ce
1
2�

∫ 2�
0

eit+z
eit−z

logh(eit )dt
, |C |=1 (2)

where h is a positive measurable function and logh∈L1(�D), and C is a constant. A function f
defined in (2) is in Hardy H p,0<p�∞, if and only if h∈L p. A function f is an inner function
in D if and only if f =CBS, where C is a constant, |C |=1, B is a Blaschke product and S is
a singular function, or, equivalently, f maps D into D with unimodular non-tangential boundary
values almost everywhere on �D (see, for instance, [1]). There are parallel notions and results for
the upper-half complex plane.

A natural question is whether there is a similar boundary behavior for Blaschke products of
infinite zeros, and for singular functions constructed from general singular measures on �D, and
what is for outer functions? The mentioned functions are all in the Nevanlinna class and therefore
have non-tangential boundary values (or angular limits). The concept of the phase derivative and
monotonicity of the phase function all depend on suitable parameterizations of the boundary curve.
As example, for the boundary values of a Blaschke product there exists a real-valued function �(t)
such that

B(eit )=ei�(t) a.e.

The choice for the function �(t), however, is not unique. In fact,

B(eit )=ei(�(t)+2�k(t)) a.e.

for any function k : [0,2�)→Z, where Z denotes the set of all integers.
The above questions have root in contemporary study of theoretical signal analysis. They

motivated a number of researchers who have subsequently worked out partial results in this
direction (see [2, 3, 6–11]). But none of the existing results are able to concern Blaschke products of
infinite zeros or singular inner functions from general positive Borel measures singular to Lebesgue
measure, or for general inner functions and outer functions. Very relevant results, such as Julia–
Wolff–Carathéodory’s theorem, however, already exist in complex analysis of one variable. What
we do in this note is to interpret the existing results and provide a formulation in the right context
under which the above questions are answered. We show that under our formulation, the phase
derivatives of inner functions exist and are positive almost everywhere. For outer functions, it is
different. The simplest case of outer functions is studied in [3]. In strict mathematical formulation
and by using a different approach, we show that under a mild condition phase derivatives of outer
functions exist almost everywhere and are of zero mean on the boundary. In Section 2 we develop
the theory and, in Section 3, as application, we interpret the obtained results in the signal analysis
context.
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2. BOUNDARY DERIVATIVE OF PHASE FUNCTIONS

For an analytic function f :D→C, writing f (reit )=�r (t)e
i�r (t),r<1, and taking derivative to

both sides with respect to t , we obtain that

d

dt
�r (t)= Re

(
z
f ′(z)
f (z)

)
(3)

Note that this relation may be extended to the points reit for r�1 if the function f has analytic
continuation across an open interval containing the point reit . For general points z=eit , there is
a substitution called angular derivative defined as follows.

Definition 2.1
Let f be analytic in the annulus region {z∈C|r<|z|<1},0<r<1. Suppose that for some Stolz
angle �	0(
) at 
∈�D (see [5, p. 6]),

�	0(
)={z∈D||arg(1−
z)|<	0, |z−
|<�}, 0<	0<�/2, �<2cos	0

the limit

lim
z→
,z∈�	0 (
)

f (z)=�

exists, and for all the Stolz angles �	 at 
 for 	0<	<�/2 the limits exist and are of the same
value �. In the case we denote the limit by

lim
S:z→


f (z)=�

and call it the angular limit of f at 
. In this circumstance, this value � is denoted by f (
). Note
that here we allow the limit to be ∞ or ±∞. We say that f has the angular derivative f ′(
) at

∈�D, if f (
)= limS:z→
 f (z) �=∞ exists and if

lim
S:z→


f (z)− f (
)

z−

= f ′(
)

Again, it allows the infinite values. In the sequel without further notice, the notation f ′(
) itself
indicates the existence and represents the value of the angular derivative of f at 
∈�D.

It has been proved that the analytic function f has a finite angular derivative if and only if f (z)
has the finite angular limit f ′(
) at 
∈�D [5, p. 79]. We are now ready to define the boundary
derivative of the phase function of an analytic function f :D→C.
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Definition 2.2
Let f :D→C be analytic, and 
∈�D. If the angular limit Re(z f ′(z)/ f (z)) exists, then we denote
it by

Df (
)= lim
S:z→


Re

(
z
f ′(z)
f (z)

)

and call it the boundary derivative of the phase, or phase derivative, of f at 
. Note that for a
given 
, Df (
) may not exist, and when exists, it may happen D f (
)=±∞, or D f (
)=∞. In
the sequel the notation Df (
) itself indicates the existence, as well as represents the value of the
phase derivative of f at 
∈�D.

If f has a non-zero angular limit and a finite angular derivative f ′(
) at 
∈�D, then Df (
)=
Re(
 f ′(
)/ f (
)). If f has analytic extension across an open interval on �D containing 
 where
f (
) �=0, then Df (
)= Re(
 f ′(
)/ f (
)). In this case, the observation made at the beginning of
this section concludes that Df (
)= Re(
 f ′(
)/ f (
))=�′(t
), where 
=eit
 . This gives the reason
of the terminology ‘boundary derivative of the phase’ or ‘phase derivative’ in Definition 2.2.

We recall Julia–Wolff–Carathéodory’s theorem [12, 13]:
Theorem 2.1 (Julia–Wolff–Carathéodory)
Let f be analytic, f :D→D and �,
∈�D. Then

lim
S:z→


�− f (z)


−z
=�
� f (
,�)

where

� f (
,�)= sup
z∈D

[ |�− f (z)|2
1−| f (z)|2

/ |
−z|2
1−|z|2

]

If � f (
,�) is finite, then

lim
S:z→


f (z)=� and lim
S:z→


f ′(z)=�
� f (
,�)

The above may be re-formulated in the following form that is more pertinent to our purpose
(see [5, p. 82]):
Theorem 2.2
Let f be analytic in D with an angular limit f (
) at 
∈�D. If

f (D)⊂D, f (
)∈�D

then the angular derivative f ′(
) exists, and

0<

f ′(
)
f (
)

= sup
z∈D

1−|z|2
|
−z|2

| f (
)− f (z)|2
1−| f (z)|2 �+∞
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We have the following:

Theorem 2.3
If f is an inner function, then Df >0 a.e. Moreover, if f has an analytic extension across an open
interval containing 
=eit
 , then with the angular parameterization f (eit )=ei�(t) the phase function
�(t) is differentiable at t= t
, and 0<�′(t
)<+∞.

Proof
As inner function f has unimodular non-tangential boundary limits at almost all points on the unit
circle, Theorem 2.2 can be directly used to conclude the theorem. �

Theorem 2.3, together with Theorems 6.1 and 6.2 of Chapter II, Section 6 of [1], then implies

Corollary 2.4
If B is a Blaschke product, then DB>0 a.e. Let B(z) be the Blaschke product with zeros {zn},
and let E⊂�D be the set of accumulation points of {zn}. Then B(z) has analytic extension across
each arc of �D\E . In particular, on each of those arcs the finite boundary derivatives of the phase
function �(t) of B(z) exist and are positive.

Corollary 2.5
If S is a singular function, then DS>0 a.e. Let S(z) be the singular function determined by the
measure � on �D, and let E be the closed support of �. Then S(z) has analytic extension across
each arc of �D\E . In particular, on each of those arcs the finite boundary derivatives of the phase
function �(t) of S(z) exist and are positive.

Example
We construct in below an example for an inner function that has Df =+∞ almost everywhere
on the unit circle �D. Let {an}∞n=1 be an interpolating sequence in D, that is, for any sequence
{bn}∈ l∞ there exist solutions f ∈H∞(D) such that f (an)=bn [1, 14]. We can further assume∑∞

n=1(1−|an|)<∞ (i.e. it is additionally also a Blaschke sequence) that is a sufficient and necessary
condition for the solution f ∈H∞ and f (an)=bn is not unique, and in the case there exists an
inner function f solving the interpolation problem [14, pp. 6, 62]. It suffices, therefore, to construct
a uniform interpolating sequence [14, p. 63]. For our special purpose, we proceed as follows. We,
along each radius reik�/3,0<r<1,k=0,1, . . . ,5, construct a uniform interpolating sequence, the
availability of which is based on, for instance, Theorem 7.4, [14, p. 65]. We then combine the
six interpolating sequences together to form a sum-interpolating sequence {an}. Later, we select a
sequence {bn}⊂D such that for each n, bn is on the same radius as an , |an|<|bn|<1, and

lim
n→∞

1−|an|
1−|bn| =∞

Let now f be an inner function that solves the interpolating problem f (an)=bn,n=1,2, . . . ,

where {an} and {bn} are constructed as above. Let 
 be a point on �D such that f (
) exists as
angular limit

lim
S:z→


f (z)= f (
) and | f (
)|=1

Such 
 distributes on �D almost everywhere. Let the points 
 and f (
) be situated on some half circle
{e
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the half disc having the half circle as part of its boundary. Thus, the radius Rk0 ={reik0�/3|0<r<1}
is separated from both 
 and f (
) by a positive distance. On the basis of Theorem 2.2, we have



f ′(
)
f (
)

� sup
an∈Rk0

1−|z|2
|
−z|2

| f (
)− f (z)|2
1−| f (z)|2

= sup
an∈Rk0

(1+|an|)| f (
)−bn|2
|
−an|2(1+|bn|)

1−|an|
1−|bn|

= ∞

Next we study outer functions and prove

Theorem 2.6
Let f be an outer function in some H p space for 0<p�∞, and the analytic function f ′/ f in D

belongs to the Hardy H1(D) space. Then the angular derivatives f ′(eit ) exist and are finite almost
everywhere, and the function

eit f
′(eit )

f (eit )

is integrable with ∫ 2�

0
eit f

′(eit )

f (eit )
dt=0 (4)

Proof
Since f ∈H p, the non-tangential boundary values of f are non-zero almost everywhere [1, p. 65,
Corollary 4.2]. The existence of the finite non-tangential boundary limits of the function f ′/ f then
implies that f ′(
) exist and are finite almost everywhere. As the boundary value of a function in
the Hardy H1 space we have ∫

�D

f ′(
)
f (
)

d
=0

After changing to the angular parameter, the above relation becomes (4). �

Corollary 2.7
Under the assumptions of Theorem 2.6 there holds∫ 2�

0
Df (eit )dt=0 (5)

Proof
The integrability of eit f ′(eit )/ f (eit ) implies that of Df (eit )= Re[eit f ′(eit )/ f (eit )]. The zero mean
assertion follows from (4). �

Corollary 2.7 shows that for a large class of outer functions though the boundary derivatives of
the phase functions exist and are finite almost everywhere, they must be sometimes positive and
sometimes negative so that they have zero mean.
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3. APPLICATIONS IN SIGNAL ANALYSIS

There are some recent studies on adaptive decomposition of signals by using mono-components.
The related concepts are defined as follows.

Definition 3.1
Let F be a real-valued signal in L p([0,2�]),1�p�∞. If we denote F(t)= f (eit ), this is equivalent
to let f be a real-valued signal in L p(�D),1�p�∞. The complex-valued signal

Ã f (eit )= f (eit )+ iH̃ f (eit )

is called the analytic signal associated with f (eit ), where H̃ is the circular Hilbert transformation
(see [1, 7]). The complex-valued signal A f has the amplitude–phase modulation

Ã f (eit )=�(t)ei�(t)

where �(t)=
√

f 2(eit )+ H̃ f 2(eit ),�(t)=arccos f (eit )/�(t). The induced modulation

f (eit )=�(t)cos�(t)

is called the analytic amplitude–phase modulation (analytic modulation) of f (eit ), and the func-
tion �(t) is called the analytic phase of f (eit ). In the sense given in Definition 2.2, the boundary
derivative of the phase function of Ã f , D( Ã f ), if exists, is called the analytic phase deriva-
tive of f (eit ). A real-valued such signal F in L p([0,2�]) or f in L p(�D) is said to have
instantaneous frequency if and only if D( Ã f ) exist and D( Ã f )�0,a.e. on �D, allowing the
value +∞. We say that F is a mono-component on [0,2�], or f is a mono-component on �D if
and only if f has instantaneous frequency on �D.

Note that a function f is a mono-component if and only if its analytic phase derivative is of
positive values, allowing +∞, almost everywhere. And if and only if in this case, we say that the
signal f has instantaneous frequency. We wish to stress that mono-component and instantaneous
frequency are for the whole function: They are not a local or point-wise property.

Amplitude–phase modulation for a real-valued signal is not unique. However, it is the analytic
modulation based on which the concept mono-component is defined. Analytic signals associated
with real-valued signals in L p spaces are boundary values of functions in the corresponding
complex Hardy spaces [2]. They are interpreted as ‘physically realizable’ signals. The requirement
�′(t)�0,a.e. for analytic phase derivative is essential. Frequency in physics is defined to be the
time of vibrations in the unit time interval, and, thus has to be non-negative. Quantitative signal
analysis is crucially based on the positivity of frequencies. The concept instantaneous frequency has
some controversies, however. Some authors call any analytic phase derivative �′(t) instantaneous
frequency without the requirement �′(t)�0,a.e.

Associated with this notion one seeks adaptive decomposition of signals. Given an arbitrary
signal f on �D, one wishes to have the decomposition of f into mono-components in the fastest
manner:

f (t)=
∞∑
1

�k(t)cos�k(t) (6)
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where for each k the analytic modulation �k(t)cos�k(t) is a mono-component. A characterization
of analytic modulation is

H̃(�k(·)cos�k(·))(t)=�k(t)sin�k(t)

Note that this is a generalization of the Fourier series theory to both contexts the unit circle and
the real line. In particular, there hold

H̃(cosk(·))(t)=sinkt, k=1,2, . . .

The notion ‘fastest decomposition’ depends on a metric of the space of signals. After a metric
is assigned to a class of signals, there are different ways to formulate what is meant by ‘fastest
decomposition’. For instance, for a fixed >0, one can require to find the least index k0 for which
there exists a set of mono-components �k(t)cos�k(t),1�k�k0, such that

dist

(
f,

k01 �
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On the boundaries,

eit = i−s

i+s
, �((−∞,∞])={eit |−�<t��}, s= i

1−eit

1+eit

and

s= tan
t

2
, t=2arctans,

dt

ds
= 2

1+s2
,

ds

dt
= 1

2
sec2 t

2

The mono-components on the line are a subclass of the real-valued functions f on the line
whose Hilbert transform H f can be defined. This will allow the possibility of having f as the
real part of the boundary value of a good analytic function in the upper-half complex plane.
We define, in the same pattern as for signals on the unit circle, the associated analytic signal
A( f )= f + iH f. By using the natural amplitude–phase modulation A( f )(s)=�(s)ei�(s), we can
define the analytic modulation f (s)=�(s)cos�(s). The mono-components should be defined to
be those for which the corresponding phase function �, obtained via analytic modulation, has
non-negative derivatives �′(s) almost everywhere, allowing the +∞ value. To make it a wider
sense and avoid boundary parameterization paradox, we also approach it from the inner points
of the domain. We proceed by converting the case to the already established theory in the disc,
that is to map everything in the upper-half complex plane by Cayley transformation into the unit
disc. The Cayley transformation preserves complex analyticity and is of monotonicity restricted
on the boundaries. We call f a mono-component on the line if and only if f (�−1(eit )) is a mono-
component on the circle, and the boundary derivative of the phase, or the phase derivative, of f is
defined to be DR f (s)=DD( f ◦�−1)(�(s))dt/ds, where DD is identical with D in Definition 2.2.
By abuse of notation we express

(�−1 f )(w)= f (�−1w), (� f )(z)= f (�z)

and, consequently, the above-defined phase derivative may be re-written as

DR f (s)= 2

1+s2
(�DD�−1) f (s)

We indicate that there also holds

H =�H̃�−1

In fact, if F is defined on R, then we have �−1HF= H̃�−1F. This is because the both sides
are the boundary value of the harmonic conjugate, with certain normalization, of the harmonic
extension of �−1F into the unit disc.

Theorem 3.2
The real parts of the boundary values of the inner functions on the line are all mono-components.



PHASE DERIVATIVE OF INNER AND OUTER FUNCTIONS 263

REFERENCES

1. Garnett JB. Bounded Analytic Functions. Academic Press: New York, 1987.
2. Qian T. Characterization of boundary values of functions in Hardy spaces with application in signal analysis.

Journal of Integral Equations and Applications 2005; 17(2):159–198.
3. Danile VV. Analytic signals with non-negative instantaneous frequency. Journal of Integral Equations and

Applications, in press.
4. Tsuji M. Potential Theory in Modern Function Theory. Maruzen: Tokyo, 1959.
5. Pommerrenke Ch. Boundary Behaviour of Conformal Maps. Grundlehren der mathematischen Wissenschaften.

Springer: Berlin, 1991; 299.
6. Picinbono B. On instantaneous amplitude and phase of signals. IEEE Transactions on Signal Processing 1997;

45(3):552–560.
7. Qian T. Analytic signals and harmonic measures. Journal of Mathematical Analysis and Applications 2006;

314:526–536.
8. Qian T. Mono-components for decomposition of signals. Mathematical Methods in the Applied Sciences 2006;

29:1187–1198.
9. Qian T, Chen Q-H, Li L-Q. Analytic unit quadrature signals with nonlinear phase. Physica D 2005; 203:80–87.

10. Xu Y-S, Yan D-Y. The Bedrosian identity for the Hilbert transform of product functions. Proceedings of the
American Mathematical Society 2006; 134:2719–2728.

11. Yu B, Zhang H-Z. The Bedrosian identity and homogeneous semi-convolution equations. Journal of Integral
Equations and Applications, in press.

12. Abate M. Iteration Theory of Holomorphic Mappings on Taut Manifolds. Mediterranean Press: Rende, 1989.
13. Migliorini S, Vlacci F. A new rigidity result for holomorphic maps. Indagationes Mathematicae—New Series

13(4):537–549.
14. Colwell P. Blaschke Products, Bounded Analytic Functions. University of Michigan Press: Ann Arbor, MI, 1985.
15. Huang NE et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary

time series analysis. Proceedings of the Royal Society of London, Series A 1998; 454:903–995.
16. Bedrosian E. A product theorem for Hilbert transform. Proceedings of IEEE 1963; 51:868–869.
17. Chen Q-H, Li L-Q, Qian T. Stability of frames generalized by non-linear Fourier atoms. International Journal

of Wavelets, Multiresolution and Information Processing 2005; 3(4):1–12.
18. Qian T. Adaptive decomposition of signals. In Wavelet Analysis and Applications, Qian T, Vai Mang I, Yuesheng

Xu (eds). Applied and Numerical Harmonic Analysis. Birkhäuser: Basel, Switzerland, 2006; 315–335.
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