Half Dirichlet Problems and Decompositions of Poisson Kernels

Richard Delanghe and Tao Qia n

r We ad e a - fCiff daleb a f [5]. I a t in, a e e a
e l
e $\quad a \in \mathbf{C}_{m+1}$ a \quad ef

$$
a=\sum_{A} a_{A} \mathbf{e}_{A}
$$

e e $a_{A} \in \mathbf{C}, A=<j_{1}, \cdots, j_{l}, 0 \leq j_{1}<\cdots<j_{l} \leq m$, a d e e $\mathbf{e}_{A}=\mathbf{e}_{j_{1}} \cdots \mathbf{e}_{j}$ a e e reduced products f ba - e e \qquad $\mathrm{e}|a|=\left(\sum_{A}\left|a_{A}\right|^{2}\right)^{1 / 2}-$ e $\quad a \in \mathbf{C}_{m \neq 1}$. T e c \jmath a e $\bar{a}-$ defi ed be \qquad $-$ $d \mathrm{c} f \mathrm{e}$
 - ef da e a $\boldsymbol{\lambda}-\mathrm{f}$ eD-ac e a (ee be $\boldsymbol{\lambda}$) - \mathbf{R}^{m+1} de ed b
$E(x) ;$ a e e_ -

$$
E(x)=\frac{1}{A_{m+1}} \frac{\bar{x}}{|x|^{m+1}}
$$

e e A_{m+1} - e a ea f e $m-d-$ e - a - e e- \mathbf{R}^{m+1}.
We - d ce ef c-

$$
\alpha(x)=\frac{1}{2}\left(1+i \frac{\partial \Phi(x)}{|\partial \Phi(x)|}\right), \quad \beta(x)=\frac{1}{2}\left(1-i \frac{\partial \Phi(x)}{|\partial \Phi(x)|}\right)
$$

e e $\partial-\mathrm{e} \quad \mathrm{a} \mathbf{D}-\mathrm{ac}$ e a $\partial=\frac{\partial}{\partial_{0}} \mathbf{e}_{0}+\frac{\partial}{\partial{ }_{1}} \mathbf{e}_{1}+\cdots+\frac{\partial}{\partial} \mathbf{e}_{m}, \mathrm{a} d i-\quad$ e $\mathrm{a}-\mathrm{a}-\mathrm{a}-\mathrm{e} \mathrm{c} \quad \mathrm{b}$ be $\mathrm{e} . \mathrm{T} \mathrm{e}$ ec $\partial \Phi(x) /|\partial \Phi(x)|$ a $-\mathrm{a} \mathrm{ec} f \mathrm{e}$ face Σ e $\quad \mathrm{e} \quad x \quad \Sigma$, de ed b

$$
n=\frac{\partial \Phi(x)}{|\partial \Phi(x)|}
$$

We a e a e face - t ab a d d- てle e ace -

F eac fi ed $x \in \Sigma, \alpha(x)$ a d $\beta(x)$ a e $\mathrm{e} \quad-\mathrm{a} \quad$ à - - e tle -- \mathbf{C}_{m+1}, -e.

$$
\begin{gathered}
\alpha^{2}(x)=\alpha(x), \quad \beta^{2}(x)=\beta(x) \\
\alpha(x) \beta(x)=\beta(x) \alpha(x)=0 \\
\bar{\alpha}(x)=\alpha(x), \quad \bar{\beta}(x)=\beta(x)
\end{gathered}
$$

M e e,

$$
\alpha(x)+\beta(x)=1
$$

$f \quad c-\quad-\quad$ ade $d-e c \quad-\quad$ e ace d $a^{-} 3140$ ef c^{-}.

H Ne $\mathrm{c}-\mathrm{f} \mathrm{c}-\quad \mathrm{f}$ de ee λ, $f \in L^{\boldsymbol{p}}(\Sigma), 1<p<\infty$, fildW(x) c a

$$
\begin{align*}
& \begin{cases}\partial W(x)=0 & x \in \Omega \\
\alpha(x) W(x)=\alpha(x) f(x) & x \in \Sigma\end{cases} \tag{1.1}\\
& \begin{cases}\partial W(x)=0 & x \in \Omega \\
\beta(x) W(x)=\beta(x) f(x) & x \in \Sigma\end{cases} \tag{1.2}
\end{align*}
$$

T e cate $p=1$ a d $p=\infty$ e -e

- ed- - ae.Tef \boldsymbol{M} - ec-

e ak $D-\tau \mathbf{b}-\mathrm{b}-\mathrm{baMa} d-\quad \mathrm{e} \quad \mathrm{e}-\mathrm{ak} \operatorname{ace} \mathbf{R}^{m+1}$, e ec-ed. We -ind d-c eD-t b ad ec e d^{-}dec
 f - -c e.

2. Half Dirichlet Problems in the Unit Ball

 b da $f B(1)$, e - e e-de ed b S_{m}. T e - e ec - f

le face a e

$$
\alpha(x)=\frac{1}{2}(1+i x), \quad \beta(x)=\frac{1}{2}(1-i x) .
$$

We a e

$$
\alpha(x) \beta(x)=\beta(x) \alpha(x)=1-|x|^{2}
$$

If, - a t. i, $x=r \omega-r=1$, .e. $x-$ e \quad e e, e e a e

$$
\alpha(\omega) \beta(\omega)=\beta(\omega) \alpha(\omega)=0
$$

TeCac a f fa-e b da da a f - - e b

$$
C(f)(x)=\int_{S} \bar{C}(\omega) f(\omega) d s(\omega)
$$

e e

$$
C(x, \omega)=\frac{1}{A_{m+1}} \omega \frac{x-\omega}{|x-\omega|^{m+1}}
$$

- eCace el e e.
T e a e e -iad e-e d c a-f eab e
$-\mathrm{e} a-$.

$$
C(f)=<C, f_{\Sigma}
$$

$-\mathrm{b}-\mathrm{e} \mathrm{e}$ a e defi e

$$
<g, f_{\Sigma}=\int_{\Sigma} \bar{g}(\omega) f(\omega) d s(\omega)
$$

eCac－e a $C(f)=C_{S}(f)$ f ef c－ $2 \alpha(\omega) f(\omega)$－tle e－ba
e e $f(\omega)-$ eb da da a－e－（1．1），－．е．

$$
\begin{aligned}
C(2 \alpha f)(x) & =\frac{1}{A_{m+1}} \int_{S} \frac{x-\omega}{|x-\omega|^{m+1}} \omega[2 \alpha(\omega) f(\omega)] d s(\omega) \\
& =\frac{1}{A_{m+1}} \int_{S} \frac{x-\omega}{|x-\omega|^{m+1}} \omega(1+i \omega) f(\omega) d s(\omega) .
\end{aligned}
$$

Se

$$
W^{\alpha}(x)=C(2 \alpha f)(x)
$$

$\mathrm{W}-\mathrm{e} x=r \xi, \quad \mathrm{e} \quad \mathrm{a}$ e

$$
\begin{aligned}
& \left(\rightarrow W^{\alpha}(x)-(\mathbf{l}-) \quad \text { e でーB(} 1\right) \text {; } \\
& \rightarrow \\
& \underset{r \rightarrow 1-}{\mathbf{k}} W^{\alpha}(r \xi)=W(\xi) \quad(\mathrm{a} \text { defi }--\quad \text {) } \\
& =\frac{1}{2}[2 \alpha(\xi) f(\xi)+\mathcal{H}(2 \alpha f)(\xi)],
\end{aligned}
$$

e e $\mathcal{H}-$ e Hilbert transformation $\quad C^{\lambda}\left(S_{m}\right)$ a d $L^{\mu}\left(S_{m}\right) .(\rightarrow-\quad$ e ca d
 ee－defi ed be e $-c-a>a>e-e$ a

$$
\mathcal{H}(f)(x)=p \cdot v \cdot \frac{2}{A_{m+1}} \int_{S} \frac{\xi-\omega}{|\xi-\omega|^{m+1}} \omega f(\omega) d s(\omega) .
$$

c．r \quad T efac a \mathcal{H} a $C^{\lambda}\left(S_{m}\right) \quad C^{\lambda}\left(S_{m}\right)$ a a b ded e a－aced c bac $\quad[11] ;$ a d a \mathcal{H} a $L^{\mathcal{N}}\left(S_{m}\right) \quad L^{\hat{\mu}}\left(S_{m}\right)$ ，ba ed，$f \quad p=2$ ，e Picee e e e e e；f $p \neq 2$ e efe［2］＿［4］．T e atrle f e PRe－f $-f c^{-}-L^{p}-a c \quad$ e e ce f eb ded e $f \mathcal{H}-$ e L^{μ} ace（ee［12］＿［14］）．
$r N$ e a e e f e e－i H－be a f a－－f
a a a ． S e a ca e ab edefi ed \mathcal{H} e Cauchy singular in－ tegralr e e e．T e－ead e e e－$\quad \mathrm{H}$－be a $\mathrm{f} a-\mathrm{f}$
 fa（bf ）e trf $c--\Omega(e e, f-a \operatorname{ce},[1]) . O$ e e－ak ace e c ce c－c－leb \quad d e a e f e e ad $a^{-}-c d^{-}$ ba
$\mathrm{N} \quad \mathrm{c}$ te ef $\mathrm{c}-\alpha(x) W^{\alpha}(x) . \mathrm{Ta}-\mathrm{ek}-\mathrm{eb}$ da ，e a e

$$
\begin{aligned}
\underset{\substack{\mathbf{t}} 1-}{ } \alpha(x) W^{\alpha}(x) & =\alpha(\xi) W^{\alpha}(\xi) \\
& =\alpha^{2}(\xi) f(\xi)+\alpha(\xi) \mathcal{H}(\alpha f)(\xi) \\
& =\alpha(\xi) f(\xi)+\alpha(\xi) \mathcal{H}(\alpha f)(\xi) .
\end{aligned}
$$

B ，a

$$
\begin{equation*}
(1+i \xi)(\xi-\omega) \omega(1+i \omega)=0 \tag{2.1}
\end{equation*}
$$

e $\mathrm{b} \mathrm{a}^{-}$

$$
\alpha(\xi) \mathcal{H}(\alpha f)(\xi)=0
$$

C e e

$$
\mathbf{K}_{\boldsymbol{1}, 1-} \alpha(x) W^{\alpha}(x)=\alpha(\xi) f(\xi)
$$

T e ef $e, W^{\alpha} \Delta \mathrm{e}$ e bie（1．1）． S －－ $\mathbf{~} \mathrm{a}$ ，

$$
W^{\beta}(x)=C(2 \beta f)(x)
$$

e e－ble（1．2）．
Teab e \quad－$W^{\alpha} \mathrm{ad} W^{\beta}$ e bl（1．1）ad（1．2），e ec－e $r-\mathrm{e}-\mathrm{e} \quad \mathrm{e} \boldsymbol{-} \mathrm{f} \mathrm{eck} \tau \mathrm{a} \mathbf{D}-\mathrm{c} \mathbf{k} \quad \mathrm{b}: \mathrm{G}-\mathrm{e} \mathrm{b}$ da da a
$f \in C^{\lambda}(\Sigma), 0<\lambda<1 \quad f \in L^{p}(\Sigma), 1<p<\infty$ ，fi $d U(x) \quad$ c \quad a

$$
\begin{cases}\Delta U(x)=0 & x \in B(1) \tag{2.2}\\ \left.U\right|_{S}(x)=f(x) & x \in S_{m},\end{cases}
$$

We eca \boldsymbol{M} ef \boldsymbol{M}－fac．
$\left(\rightarrow W^{\alpha}\right.$ add W^{β} a edf－e でーB（1）；a d

$f c-x f(x)-a \quad \tau-\Omega(\mathrm{ee}, f-$ a ce，$[5])$ ．
We e ef e a e a $\alpha(x) W^{\alpha}(x)$ a d $\beta(x) W^{\beta}(x)$ b a e a \quad c－
$B(1)$ ．He ce

$$
\begin{equation*}
U(x)=\alpha(x) W^{\alpha}(x)+\beta(x) W^{\beta}(x) \tag{2.3}
\end{equation*}
$$

－a τ－$B(1) . \mathrm{M}$ e e，

$$
\begin{aligned}
\underset{r \rightarrow 1-}{\mathbf{t}} U(r \xi) & =\alpha(\xi) W^{\alpha}(\xi)+\beta(\xi) W^{\beta}(\xi) \\
& =\alpha(\xi) f(\xi)+\beta(\xi) f(\xi) \\
& =f(\xi)
\end{aligned}
$$

e e

$$
P(x, \omega)=\frac{1}{A_{m+1}} \frac{1-|x|^{2}}{|x-\omega|^{m+1}}, \quad x \in B(1), \xi \in S_{m}
$$

$-\quad e \mathrm{P}$－$\quad \mathrm{e}$

e

$$
C^{\alpha}(\omega)=\frac{2}{A_{m+1}} \alpha(x) \frac{x-\omega}{|x-\omega|^{m+1}} \omega \alpha(\omega)
$$

a d

$$
C^{\beta}(\omega)=\frac{2}{A_{m+1}} \beta(x) \frac{x-\omega}{|x-\omega|^{m+1}} \omega \beta(\omega)
$$

$\mathrm{De} \mathrm{e}_{\mathrm{e}} \mathrm{e}-$

$$
(1+i x)(x-\omega) \omega(1+i \omega)+(1-i x)(x-\omega) \omega(1-i \omega)=2\left(1-|x|^{2}\right)
$$

e ba- e dec --

$$
\begin{equation*}
P(x, \omega)=C^{\alpha}(\omega)+C^{\beta}(\omega) \tag{2.4}
\end{equation*}
$$

ad e ce e $\quad-\alpha(x) W^{\alpha}(x)$ a d $\beta(x) W^{\beta}(x)$ a e - e, e ec - ed, b

$$
\begin{equation*}
\alpha(x) W^{\alpha}(x)=\int_{S} C^{\alpha}(\omega) f(\omega) d s(\omega) \tag{2.5}
\end{equation*}
$$

a d

$$
\begin{equation*}
\beta(x) W^{\beta}(x)=\int_{S} C^{\beta}(\omega) f(\omega) d s(\omega) \tag{2.6}
\end{equation*}
$$

Remarks

\rightarrow Te - f(1.1) ad(1.2)f e -balcaeaealead d-c ed

- e a e [7].
$(\rightarrow \mathrm{F}$ (2.3), e e $-(2.5) \mathrm{ad}(2.6)$, a be- e a
$U(x)=\alpha(x) \int_{S} \bar{C}(\omega)(2 \alpha f)(\omega) d s(\omega)+\beta(x) \int_{S} \bar{C}(\omega)(2 \beta f)(\omega) d s(\omega)$,
c $-\mathrm{d} \tau \mathrm{a}-\mathrm{efac} \mathrm{a}$ ect $\tau \mathrm{a} D-\tau \mathbf{c}$ b (2.2)f e -ba

r I deed, $\mathrm{a} a \mathrm{f}$ e dec -- (2.4) a e e e a a a ad be
$f d-[7]$. Tere a e e e \quad -

$$
P(x, \omega)=P^{\alpha}(x, \omega)+P^{\beta}(x, \omega)
$$

e e

$$
P^{\alpha}(x, \omega)=\alpha(x) P(x, \omega), \quad P^{\beta}=\beta(x) P(x, \omega) .
$$

e e ed $-[7]$ T e e $3.2(\rightarrow)$.
(-) I [6], - ed a e - e - e ble (2.2) ead

$$
\begin{equation*}
U(x)=F_{1}(x)+x F_{2}(x), \tag{2.7}
\end{equation*}
$$

e e

$$
F_{1}(x)=<S(\omega), f(\omega)_{S}
$$

a d

$$
F_{2}(x)=<S(\omega), \bar{\omega} f(\omega)_{S},
$$

$\operatorname{add} S(\omega)-\mathrm{eSe}$ e edfebaMe af ebaM$S(\omega)=C(\omega)$. Wer a e a F_{1} a d F_{2} b a e $(\mathrm{b} f-)$ e $\tau-B(1)$. If $f-$ a e-- e able e F_{1}, F_{2} be eHad ace $H^{2}(B(1))$

$$
\underset{r \rightarrow 1-}{\mathbf{k}} F_{1}(r \xi)=\mathbf{P} f(\xi)
$$

a d

$$
\begin{aligned}
& \underset{, \rightarrow 1-}{\mathbf{K}_{1}} F_{2}(r \xi)=\mathbf{P}(\bar{\omega} f)(\xi),
\end{aligned}
$$

$$
\begin{aligned}
& \text { dec } \\
& P(x, \omega)=\bar{S}(\omega)+x \bar{S}(\omega) \bar{\omega}, \quad x \in B(1), \omega \in S_{m} .
\end{aligned}
$$

S－cef eba $S(\omega)=C(\omega)$, －a a^{-}a ect でaD－て
bi a be $\boldsymbol{\lambda}$ ed b e eो－eCac a f a－．
 G－e $f \in L^{2}\left(S_{1}\right), \quad \mathrm{e} \quad$－$u$

$$
\begin{cases}\Delta u(x)=0 & x \in B(1) \tag{2.8}\\ \left.u\right|_{S_{1}}(x)=f(x) & x \in S_{1},\end{cases}
$$

－－e b

$$
u(z)=h(z)+\overline{H(z)}
$$

e e

$$
h(z)=(S f)(z)
$$

a d

$$
H(z)=z S(-
$$

$$
\sigma^{ \pm}=\frac{1}{2}\left(1 \pm i \overline{\mathbf{e}}_{0}\right)
$$

N er a e a e
ef $\mathrm{c}-\alpha(x)$ a d $\beta(x)$ defi ed $-\delta 1$ a d e a e c a f c-.Te akD-t $\mathbf{~}$ - bis a e ed a
$\mathrm{G}-\mathrm{e} \quad u \in L^{\mathcal{N}}\left(\mathbf{R}^{m}\right), 1<p<\infty$, fi $\mathrm{d} W-\mathbf{R}_{+}^{m+1} \quad$ c a (1.1) a d (1.2) de ec-edf $\alpha(x)=\sigma^{+}$a $\mathrm{d} \beta(x)=\sigma^{-}$, e e $f=u, \Omega=\mathbf{R}_{+}^{m+1}, \Sigma=\mathbf{R}^{m}$. Weck-a e akD-tik a \quad e $\mathbf{~}$ - edb

$$
W^{ \pm}(x)=C\left(2 \sigma^{ \pm} u\right)(x)
$$

I deed, e a e $\partial W^{ \pm}(x)=0$, a d, a a a e ffac, $W^{ \pm} \in H^{2}\left(\mathbf{R}^{m+1}\right)$. A f eb da c d-- , a

$$
\underset{0 \rightarrow 0+}{\boldsymbol{k}} \sigma^{+} W^{+}\left(x_{0}, \underline{x}\right)=\sigma^{+} u(\underline{x}),
$$

ecalef W^{-}be- $-\rightarrow$.
Teb ded e feRt a f - \quad ePR eles -f
2. We e ef e a e

$$
\underset{0 \rightarrow 0+}{\mathbf{\Sigma}_{0}} W^{+}\left(x_{0}, \underline{x}\right)=\frac{1}{2}\left[2 \sigma^{+} u(\underline{x})+\mathcal{H}\left(2 \sigma^{+} u\right)(x)\right]
$$

N te a $f\left(\underline{x}, \underline{y} \in \mathbf{R}^{m}\right.$,

$$
\begin{equation*}
\left(1+i \overline{\mathbf{e}}_{0}\right)(\underline{x}-\underline{y}) \overline{\mathbf{e}}_{0}\left(1+i \overline{\mathbf{e}}_{0}\right)=0 \tag{3.1}
\end{equation*}
$$

e ce

T e e - efac a $\sigma^{+} 2=\sigma^{+}$, e e

$$
\underset{0 \rightarrow 0+}{\mathbf{k}} \sigma^{+} W^{+}\left(x_{0}, \underline{x}\right)=\sigma^{+} u(\underline{x})
$$

$\mathrm{A} \mathrm{a} \quad \mathbf{\Delta}$,

$$
\underset{0 \rightarrow 0+}{\mathbf{k}} \sigma^{-} W^{-}\left(x_{0}, \underline{x}\right)=\sigma^{-} u(\underline{x})
$$

$$
C^{ \pm}(\underline{y})=\frac{2}{A_{m+1}} \sigma^{ \pm} \frac{x-\underline{y}}{|x-\underline{y}|^{m+1}} \overline{\mathbf{e}}_{0} \sigma^{ \pm}
$$

$A \quad a-f$ a d c $\quad a$ - $\quad a$

$$
4 x_{0}=\left(1+i \overline{\mathbf{e}}_{0}\right)(x-\underline{y}) \overline{\mathbf{e}}_{0}\left(1+i \overline{\mathbf{e}}_{0}\right)+\left(1-i \overline{\mathbf{e}}_{0}\right)(x-\underline{y}) \overline{\mathbf{e}}_{0}\left(1-i \overline{\mathbf{e}}_{0}\right)
$$

$$
\mathbf{R}_{+}^{m+1}:
$$

$$
P(x, \underline{y})=\frac{2}{A_{m+1}} \frac{x_{0}}{|x-\underline{y}|^{m+1}}=C^{+}(\underline{y})+C^{-}(\underline{y}), x \in \mathbf{R}_{+}^{m+1} ; y \in \mathbf{R}^{m}
$$

C e e $\mathbf{\lambda}, f u \in L^{p}\left(\mathbf{R}^{m}\right)$ - e,

$$
\begin{aligned}
\int_{\mathbf{R}} P(x, \underline{y}) u(\underline{y}) d \underline{y} & =\int_{\mathbf{R}} C^{+}(\underline{y}) u(\underline{y}) d \underline{y}+\int_{\mathbf{R}} C^{-}(\underline{y}) u(\underline{y}) d \underline{y} \\
& =\sigma^{+} W^{+}(x)+\sigma^{-} W^{-}(x)
\end{aligned}
$$

A $\sigma^{+} W^{+}$a d $\sigma^{-} W^{-}$b a e a \quad 七- \mathbf{R}_{+}^{m+1}, a d

$$
\underset{0 \rightarrow 0+}{\mathbf{k}}\left(\sigma^{+} W^{+}\left(x_{0}, \underline{x}\right)+\sigma^{-} W^{-}\left(x_{0}, \underline{x}\right)\right)=u(\underline{x})
$$

$$
\begin{cases}\Delta U(x)=0 & x \in \mathbf{R}_{+}^{m+1} \tag{3.2}\\ \left.U\right|_{\mathbf{R}}(x)=u(x) & x \in \mathbf{R}^{m},\end{cases}
$$

- - e b

$$
U(x)=\sigma^{+} W^{+}(x)+\sigma^{-} W^{-}(x)
$$

f a -
r A - e bame e c-e edec -- f eP - e
$-e \mathrm{eSe}$ e e-e e at ace.
F e at acecae eSe e ea - ebalicae, - e a e a
eCac e e (ee[3]):

$$
S(\underline{y})=\frac{1}{A_{m+1}} \overline{\mathbf{e}}_{0} \frac{x-\underline{y}}{|x-\underline{y}|^{m+1}}=C(\underline{y}) .
$$

De eele a_

$$
(x-\underline{y}) \overline{\mathbf{e}}_{0}+\overline{\mathbf{e}}_{0}\left((x-\underline{y}) \overline{\mathbf{e}}_{0}\right) \mathbf{e}_{0}=2 x_{0}
$$

e ba^{-}

$$
\begin{equation*}
P(x, \underline{y})=\overline{S(\underline{y})}+\mathbf{e}_{0} \overline{S(\underline{y})} \mathbf{e}_{0} . \tag{3.3}
\end{equation*}
$$

Cre d- \mathbf{d}, e a e edec $-\quad f \quad$ e \quad - fed-t \quad b-

$$
\begin{equation*}
U(x)=F_{1}+\overline{\mathbf{e}}_{0} F_{2}, \quad x \in \mathbf{R}_{+}^{m+1} \tag{3.4}
\end{equation*}
$$

e e

$$
F_{1}(x)=<S, u, \quad F_{2}(x)=<S, \mathbf{e}_{0} u
$$

N_{e} a $f u \in L^{2}\left(\mathbf{R}^{m}\right), F_{1}$ a d $F_{2} \mathrm{~b}$ be \quad eHa d ace $H^{2}\left(\mathbf{R}_{+}^{m+1}\right)$.
T e dec -- (3.4) a a ead b^{-}- ed - [6].

4. Half Dirichlet Problems for General Domains

Le eb da face Σ fa e e aid $\mathrm{a}-\Omega$ be - e b $\Phi(x)=0$. We eca i $-\cdots$ - चle $\mathrm{e} \quad \mathrm{a}$ e defi ed b

$$
\alpha(x)=\frac{1}{2}\left(1+i \frac{\partial \Phi(x)}{|\partial \Phi(x)|}\right), \quad \beta(x)=\frac{1}{2}\left(1-i \frac{\partial \Phi(x)}{|\partial \Phi(x)|}\right),
$$

e e e ec $\partial \Phi(x) /|\partial \Phi(x)|-\mathrm{a}-\quad \mathrm{a}$ ec \qquad e face Σ a e - $x \in \Sigma$, de ed b

$$
n=\frac{\partial \Phi(x)}{|\partial \Phi(x)|}
$$

F e balcae $\Phi(x)=\sum_{k=0}^{m} x_{k} 2-1 \mathrm{ad} f$ e e at ace ca e r. $\Phi(x)=x_{0} . \mathrm{F} \quad$ e eca e $n=$ a d $n=\overline{\mathbf{e}}_{0}$, e ec -ed.I ef e
 (2.1)rad (3.1), e ec-ed. If e akD-t \mathbf{e} b (1.1) ad (1.2) e e

$$
(1+i n)(x-y) n(1+i n)=0
$$

T - a ca- a \quad acc $\quad n^{2}=-1$, e e e

$$
[(x-y) n+n(x-y)]+i[n(x-y) n-(x-y)]=0
$$

$$
(x-y) n+n(x-y)=0 \quad \text { and } \quad n(x-y) n-(x-y)=0 .
$$

B $\mathbf{-} \quad n \quad$ b the f e ec de a- , bec e e a e a efi ad ef e ed ce e el -

$$
<x-y, n+<x-y, n=0, \quad \text { and } \quad(x-y) \wedge n-(x-y) \wedge n=0
$$

$$
(x-y) \perp(n+n) \quad \text { and } \quad(x-y) \|(n-n) .
$$

Ted c d-- \quad a e face bea e e- a m-d- e -
\qquad
ec - We \qquad -e ca e ded e -
ec e a e e a d aldace.

References

[1] A. Axelsson, K.I. Kou, Y.C. Li, T. Qian and Y. Yang, Hilbert transformation on the Unit Sphere. To appear in Proceedings of Symposium on Hyper-Complex Analysis, University of Macau, 2007.
[2] S. Bell, The Cauchy transform, potential theory, and conformal mappings. CRC Press, Boca Raton, 1992.
[3] J. Cnops, An introduction to Dirac operators on manifolds. Birkhaüser, Boston, 2002.
[4] R. Coifman, A. McIntosh and Y. Meyer, L'intégrale de Cauchy définit un opérateur borné sur L^{2} pour les courbes lipschitziennes. Ann. of Math. 116 (1982), 361-387.
[5] R. Delanghe, Clifford analysis: history and perspective. CMFT 1 (2001), 107-153.
[6] R. Delanghe, On some properties of the Hilbert transform in Euclidean space. Bull. Belg. Math. Soc. 11 (2004), 163-180.
[7] R. Delanghe, F. Sommen and Z-Y. Xu, Half Dirichlet problems for powers of the Dirac operator in the unit ball of $\mathbf{R}^{m}, m \geq 3$. Bull. Belg. Math. Soc., Tijdschr. Belg. Wisk. Gen. 42 (1990), 3, ser. B-409.
[8] K. Kou and T. Qian, The Paley-Wiener theorem in \mathbf{R}^{n} with the Clifford analysis setting. Journal of Functional Analysis, 189 (2002), 227-241.
[9] C. Li, A. McIntosh and T. Qian, Clifford algebras, Fourier transforms and singular convolution operators on Lipchitz surfaces. Revista Matemática Iberoamericana, Vol. 10, N. ${ }^{\circ} 3$, (1994).
[10] A. McIntosh, Clifford algebras, Fourier theory, singular integrals, and harmonic functions on Lipschitz domains. In: " Clifford Algebras in Analysis and Related Topics" (J. Ryan, Ed.), Studies in Advanced Mathematics Series, CRC Press, Boca Raton, 1996, pp. 33-87.
[11] J. Privalove, Sur les fonctions conjuguées. Bull. Soc. Math. France 44 (1916), 100103.
[12] T. Qian, Fourier analysis on starlike Lipschitz surfaces. Journal of Functional Analysis 183 (2001), 370-412.
[13] M. Riesz, Sur les fonctions conjuguées. Math Z. 27 (1927), 218-244.
[14] E.M. Stein, Singular Integrals and Differentiability Properties of Functions. Princeton University Press, 1970.

Richard Delanghe
Department of Mathematical Analysis
Ghent University
Galglaan 2
9000 Gent
Belgium
e-mail: Richard.Delanghe@UGent.be
Tao Qian
Department of Mathematics
University of Macau
Macao SAR
P.R. China
e-mail: fsttq@umac.mo
Received: December 18th, 2006
Accepted: February 26th, 2007

