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ABSTRACT.  Denote by RT the real-linear span of ep, ey, ..., ep, whereeg =1, e;ej +€;¢; =
—238i5,1 < i,j < n. Under the concept of left-monogeneity defined through the generalized
Cauchy-Riemann operator we obtain the direct sum decomposition of L? (R;’), n>1,

o0
PR)= Y B,
k=—00
where QX is the right-Clifford module of finite linear combinations of functions of the form
R(x)Yh(Ix|), where, for d = n + 1, the function R is a k- or —(d + |k| — 2)-homogeneous left-
monogenic function, fork > Qork < 0, respectively, and h is a function defined in [0, 00) satisfying
a certain integrability condition in relation to k, the spaces QK are invariant under Fourier trans-
formation. This extends the classical result for n = 1. We also deduce explicit Fourier transform
formulas for functions of the form R(x)h(r) refining Bochner’s formula for spherical k-harmonics.

1. Introduction

Fourier analysis in Euclidean spaces is intimately connected with the action of the group

~g— &r - = ﬁ } B 1'3 S oo ol gq—' . i —— i -

not only has fruitful results by itself, but also stimulates elegant generalizations to abstract
harmonic analysis on groups. This note will concentrate in the rotation aspect. Among
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the special features of the theory is the invariance of Fourier transformation on certain
subspaces of the square integrable functions, defined through radial functions, spherical
harmonics and Bessel functions. The latter is regarded as the symmetric property of Fourier
transformation [8, 3].

In the one-dimensional Euclidean space a function may be decomposed into a sum
of an even function and an odd function. It is easy to verify that the Fourier transform of an

even function is still an even function, and that of an odd function is still an odd function
OV war—mang thy g nede s aring =t ke Zaamliiy =+ L ¢ i anR R FP Y R SR — —
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@) M,:r the space of left-monogenic homogeneous polynomials in R} of degree k. An
arbitrary element of it, denoted by F, is called a left-inner monogenics of degree k.

(ii) M, the space of left-monogenic homogeneous functions in R} \ {0} of degree —(d +
k — 1). An arbitrary element of it, denoted by Q, is called a left-outer monogenics of
degree k.

(iii) M,'c" and M, the spaces consisting of the restrictions to the unit sphere X, of, respec-

tively, the functions in M, ,:’ and M, . The elements of MZ’ and M are called spherical
monogenics, or surface spherical monogenics.

(iv) Hx the space of surface spherical harmonics of degree & in R7.

For the lowest dimension n = 1 we recall the following result [8].
Fork € Z, let

QF = {g € L*(R}) : g(z) = f(r)e™* for some measurable function £ (r)

satisfying fw If(r)|2r dr < oo} .
0

We have the following.

Proposition 1. The direct sum decomposition

L’R)= ) Pt @2.1)

k=—00

holds in the sense that:

(a) The subspaces Q* are closed.

(b) The subspaces S2* are mutually orthogonal, k € Z.

(c) Every function of L2(R{) is a limit of finite linear combinations of functions in

0 k
Uk:—()o Q M
(d) Fourier transformation maps each subspace QF into itself.

Furthermore, we have the following.
Proposition 2.  For any f € Qk of the form f(z) = fo(r)e*?, where z = re'?, then
f(w) = Fy(R)e'*®, where w = Re'?,
o0
Fo(R) = 2mi~k / fo(r)x@rRr)rdr ,
0

where Ji (1) = 2% fozﬂ eitsint o=kl 4o is the Bessel function of order k, k € Z.
For the spaces RY, n > 1, the result is not quite the same. There holds [8]

[o¢]

L*RD) =) PM, 2.2)

k=0

where N, k > 0, is the right-Clifford module of finite linear combinations of functions of
the form H(x)f(r), where f 1is a function, defined on [0, o), satisfying
f0°° | £ ()2rd+2 =1 gr < oo and H a solid harmonics of degree k. Moreover, for f € N}
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of the form f(x) = Hi(x)fo(r), where x = rx and Hy is a k-harmonics, there holds
Bochner’s formula in terms of spherical harmonics

fx) = Hy(x)go(r)

where

o0
go(r) = 2mi k12272 / Fo(s)ar2u—2)22rrs)s @2 ds |
0

and

2k 1 _
/2) f &5 (1 — $2) D72 g

Ji(8) =
ri@k+n/2r(3) /-

is a form of Bessel function of order &, k € N.

B ! i o O Yl i

He = MF P M, - 2.3)

Note that M is a one-dimensional space generated by the Cauchy kernel function E.
The results (2.3) predates the reference [2]. It was established in four dimensions (the
quaternionic space) in the classical article of A. Sudbery [7], and independently extended
to all dimensions by F. Sommen in [6].

The space of solid harmonics of degree k, being isomorphic to the space of spherical
k-harmonics, Hy, has the finite dimension, say, y. Let {HD, H® ... H ()} be an
orthonormal basis of H, where the inner product is inherited from that of L2(X,). For any
feN,keN,

Yk Vi
&)=Y BHO@ ;) =Y YO (x) fi(0r*,
j=1 j=1
where Y € H; and f; are functions defined on [0, 00), j = 1, 2,..., ¥ From (2.3),
i , ,
fo =Y (g7 () +a; () fi0rk,

j=l1

where g}' € Mf, gj_ € M,_,. Therefore,

Yk Yk
FO) =Y Pi® i)+ 008, @4

j=1 j=1

where P; € M,;", QjeM,_,,and g;(r) = fj(r)rd+2k‘2,

Definition 2. Define
(i) S, k > 0, to be the right-Clifford module of finite linear combinations of functions of
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Since ¥ € M,_,, by (2.3), we have Y € H;. Recalling the proof of (2.2) (Lemma 2.18,
Chapter IV, [8]), there exists a function ¢, defined on [0, 00), such that

f(x) fm [/ e—27rrpx,.uly(u/) du/}fo(p)p—(k—l) dp
0 n

fo (e(ro)Y (') fo(p)p~* D dp

.-u\f_[°°..‘. el . ]

Let go(r) = ré** =2 [ fo(p)p~*De(rp)dp. Since f € L2(R}), by the Plancherel
Theorem, ||fll2 < oo, where f = Q(x)go(r) and Q(x) € M,_,. With ||Q|s
(fx, Q)P dx)/? and | Qlx < oo, we have

1712 = | leowrds
Rn
1
xX
= ( f lg(r)r‘(”’”"‘”ldr) lI% < oo
0
So, [ 1g(r)Pr~@+%=3 dr < co. This shows f € @,k e N. 0

When k£ > 0, the space Qk, being isomorphic to M,j , has the dimension o =
ij ) [2]. Let {P(l), P(Z), . P("‘k)} be an orthonormal basis of the space. A general
function F(x) in F can be uniquely written in the form Z';": o PP @) f(r), and

[+7% 00
IFI3 = fR NF@Pdx =) /O (Pt dr 3.1)
1 j=1
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Using (3.1) and (3.2), we further write, for k > 0,

IF®1 = T, 5

P22 dr; and, for k< 0, [f®)3 =

Zfﬁl f(;’o |g§|k|)(r)|2r—(d+2|k|—3) dr.

In the proof of Theorems 1 and 2 we know little about the function ¢, so we did
not get the explicit representation of go(r) in terms of fp. In below we will concentrate
in obtaining such explicit formulae. When £ > O, Qr ¢ Nk, and hence any function
f in QF is also in V. Thus, Bochner’s formula on harmonic polynomials can be used:
Forf(x) = Hi(x)fo(r), where Hy is either a k-harmonics or k-monogenics, we have

F(x) = Hi(x)go(r), where

o0
go(r) = 2ﬂi_kr_[(d+2k_2)/2]/(; f()(s)J(d+2k_2)/2(27trs)s(d+2k)/2 ds . (3.3)

Next we consider the case Q% , k € N. We need more information on bases of Qk,

Definition 3. Let

wp(x) = E(x)
9 )
oy (%) = (—D"g g E)
1 k
where (I3, ..., k) € {1,2,...,n}5, k e N.

It is deduced in {2] that {ey, 4, : (1, ..., k) € {1,2,..., n}¥} is a basis of M.

For x € R} \ {0},

o5 (x) = SRV 3 X
Iy dk - A, Oxy 3x;, 7+
_ 1 (—DkH! 5 3 5 ) ]
= n—1 Ap 3x11 axlk |X|"_1
_ l_) Hk(ll...lk) (x)
= Y| T
= _l—;lrl-i‘Z—k‘H[lxlzl_)Hk(hmlk)(x) - (n + 2k — l)iHlillk (x)]

Hk(ll...lk)(x)

+1

where Hk(ll"'l") (x) and Hk(ff_'l"l")

|x|n+2k+1 ’

(x) are polynomials of homogeneity k and k+1, respectively.

We will show that both of them are harmonic.

Lemmal. LetG(x) = leﬁ%, x € R} \ {0}, where P(x) is a homogeneous polynomial

of degree k, then

AP(x)

AGW) = T -

where A is the Laplacian for n + 1 variables xg, x1, ..., Xp.
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Proof. Consecutively taking partial derivatives, we have, foranyi =0,1,...,n,

0 1 Xi
B_,G()—(azp( ))HHTT-FP(X)[ (n+2k — )]l—lnm,
a2 1
E;EG(x) = mP(x) T + ( P(x))[ (n+2k— 1)],,,,_,__2“_1
l 1
d X
+ (IP(x)) [—(n+2k— 1)]MT+2k+—l
1 x!
+ PX)[—(n+2k - 1)) W (n+2k+ 1)—I =
a2 1 1 a
P(x) (n+2k— 1)(n+2k+1) 42
-+ 2k~ )Ix,n+2k+l |x [P +2k+3 PP
Then
1 ’ 1 a d
AG(x) = [AP(x)]I;'lm —2(n+ 2k — )l—lm[xo P(x)+- bx_P(x))]

P(x) (n+2k—1)(n+2k+l)
—(m+Dn+2k-1) AT |x|n+2k+3

AP(x) 2(n+2k - 1) a a3
- |x|n+2k—1 - Jx|nt2k+1 [(xoal"(x) *o +xnmP(x)) h kP(x)] )

(x3 +- -+ x2)P(x)

Since P(x) is homogeneous of degree k, by Euler’s formula, we have that

Y u D ey,
= O

d d
ie., (xQ—P(x) + -+ x, P(x)) —kP(x) =
daxg 0x,

Therefore, we get that

AP(x)

Corollary 1. Functions H, (G4 (x) and Hk(l1 e )(x) are harmonic.
Proof. Set

(Uy...0y)
H (x)
k
8.y (x) = TeprR=T

Since wy,.. g, is left-monogenic in RY \ {0}, it follows from A = DD that
®@=Dg and Agy ;(x)=Dwy 4 (x) =0, x € R?\ {0} .

Therefore, gj, .., is harmonic in R? \ {0}. From Lemma 1 we conclude that H, - ) () is
harmonic. Since wy,.., is harmonic, the lemma implies that Hkl1 l")(x) is harmonic. []
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The corollary can also be established by noting that if P(x) is left monogenic then
x P(x) is harmonic and then applying Kelvin inversion. That x P(x) is harmonic was first
deduced by A. Sudbery in [7] for quaternionic case and was extended to higher-dimensional
cases by J. Ryan in [5].

The following extends the classical Bochner’s formula to homogeneous monogenic
functions of negative degrees.

Theorem 3. Let f € Q% of the form f(x) = Q(x) fo(lx]), Q(x) € M,_,. Then

F@x) = 0@)go(ix) .

where, withr = |x|,

[o o]
go(r) = 2mi—kp@¥H=2/2 f fo(s)Jasa—yp@urs)s 1= 2ds . (3.4)
0
where
t/2)k LI _
Je(t) = @/2) : f e (1 - sz)(zk D72 gs
T[(2k + 1)/21T(3) /-1
is the Bessel function of order k.
Proof.  From [2], the —(d + k — 2)-homogeneous functions wy,..4, (1, .- -, I—1) €
{,2,..., n}k‘l, form a basis of M;_,. Asa function in M,_,, the function Q has the
form
Hi(x)
o) = =
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The formulas (3.3) and (3.4) together provide a refinement of Bochner’s formula with
spherical harmonics replaced by spherical monogenics. The formulas (3.3) and (3.4) can

unified into one formula by using the signum function.

Let f € Qk, k € Z,and f(x) = R(x)h(r), where if k > 0, then R(x) € M:; and, if
k < 0,then R(x) € M];l_l. Then we have

fx)=Rx)H®),

and, with ¢, = (d + 2Jk| — 2)/2,k € Z,

oo
H(r) = 2mi~kr—sen®e / fo(s)Jo, @Qrrs)s' @ g
0

where sgn(k) is the signum function that takes the value +1, —1 orOfork > 0,k < Oor
k=0.

(1

2]

3]
(4]
[5]
(6]

(7
(8]

References

Brackx, F, Delanghe, R., and Sommen, F. (1982). Clifford Analysis, Research Notes in Mathematics, 76,

Pitman Advanced Publishing Company, Boston, London, Melbourne.

Delanghe, R., Sommen, F., and Soucek, V. (1992). Clifford Algebra and Spinor Valued Functions, A Function

Theory for Dirac Operator, Kluwer, Dordrecht.

Helgason, S. (1984). Groups and Geometric Analysis, Academic Press.

Kou, K. I, Qian, T., and Sommen, F. Sampling in Bessel functions, preprint.

Ryan, J. (1990). Iterated Dirac operators in C”, Z. Anal. Anwendungen 9, 385-401.

Sommen, F. (1981). Spherical monogenic functions and analytic functionals on the unit sphere, Tokyo J. Math.

4, 427-456.
Sudbery, A. (1979). Quaternionic analysis, Math. Proc. Camb. Phil. Soc. 85, 199-225.

Stein, E. and Weiss, G. (1971). Introduction to Fourier Analysis on Euclidean Spaces, Princeton University

Press, Princeton, NJ.

Received September 25, 2004

Revision received February 03, 2006

;.u of £nite et end TarhrrlameTha Tlauewitin® Manen. P2 Non 3901 Adroacaladn ’.l%-




