fi
A.
A.

T $\quad * \dagger$
Faculty of Science and Technology University of M acau P.O. Box 3001 M acau

$$
\begin{aligned}
& \text { T A. }
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{llll}
\tau & - \\
-{ }^{-} & \theta & - \\
-{ }^{-}
\end{array} \\
& \theta \text { - } \quad \begin{aligned}
\theta & \theta
\end{aligned} \\
& \text { A. } \\
& \text { - T } \\
& \rho \equiv \\
& \text { fi } \\
& \text { T } \\
& \text { A. } \\
& \text { - T - } \\
& \text { V } \\
& \overline{\sqrt{\pi}} \int_{-\infty}^{\infty} \theta-\sqrt{\pi} \delta \quad \frac{\sqrt{\pi}-| |}{-} \sum^{\infty} \delta- \\
& \frac{}{\sqrt{\pi}} \int_{-\infty}^{\infty}-\quad-\sqrt{\pi} \delta \quad \frac{|\sqrt{\pi}-| |}{| |}--||\quad|| \\
& \text { T } \\
& \rho \stackrel{\theta}{\theta} \\
& \in \quad \pi \\
& \Sigma \\
& \sum_{-\infty}^{\infty}
\end{aligned}
$$

T A.

De nition 2.1
A. $\quad \Omega$

$$
\mathbb{D}_{\mathbb{D} \rightarrow \mathbb{D}} \in \Omega, \quad \mathbb{D} \cdots \in \Omega \text {. }
$$

convex domains convex functions

De nition 2.2
A. $\quad \Omega$
$\in \Omega \quad-\quad \in \Omega$
$\in \Omega$
A.

T T
... ... ||
D T

T

* normalized starlike functions
normalized convex functions T

```
                                    - T
                                    fi
                                    fi
```

De nition 2.3

$$
\begin{aligned}
& \rho \quad \theta \leqslant \leqslant \quad \text {. } \rho \geqslant \\
& \int^{\pi} \rho \quad \theta
\end{aligned}
$$

A.

T

Theorem 2.1
ρ
T
D

De nition 2.4
A.
∞
fi

Theorem 2.3

```
\(\rho \quad{ }^{\theta} \leqslant \leqslant \pi\)
\(\rho \quad{ }_{\infty}^{\theta} \leqslant \leqslant \pi\)
```

fi

Example 2.1 The Circle Family T

T T A.

$$
e\left\{\frac{\prime}{}\right\} \geqslant \in \mathbb{D}
$$

$$
-\ldots\{\quad\} \quad \underline{\theta} \geqslant
$$

T
$\left|\mid \cdots \quad \mathrm{C} \cdots \rho^{\theta}\right.$

$$
\begin{aligned}
& \text { T A. } \\
& \int^{\pi}--\alpha \\
& \alpha \\
& \int^{\pi} \alpha \quad \alpha \quad-\alpha \quad \alpha- \\
& \text { T } \\
& \text { D } \\
& \left(\int^{\pi} \cdot \frac{}{---} \alpha\right) \\
& \alpha \\
& \text { T }
\end{aligned}
$$

Theorem 3.1
A... - $\rho{ }^{\theta} \leqslant|\pi \quad \ldots \quad \rho \in \quad| \pi \leqslant \infty T$

T

Lemma 3.1

$$
\epsilon \rightarrow \rightarrow \infty \int_{\epsilon} 1-1 \quad \pi-
$$

Proof

$$
\begin{aligned}
& \bar{\pi} \epsilon \rightarrow^{\rightarrow \infty} \int_{-\pi \pi \cap\{k-\mid \epsilon\}}\left(\sum_{-} \overline{-x-1} \pi\right) x x \\
& \bar{\pi}_{\epsilon \rightarrow} \int_{-\pi \pi \cap\{k-\mid \epsilon\}}
\end{aligned}
$$

