AT AT A T T A Math. Meth. Appl. Sci. 1 29

T. * †

Faculty of Science and Technology University of Macau P.O. Box 3001 Macau

U A

 \mathbf{T}

T U T

$$\frac{1}{\pi} \int_{-\infty}^{\infty} \frac{1}{-1}$$

T . A

The second of th

$$\frac{1}{\pi} \int_{-\infty}^{\infty} dx \quad x = -1 \quad \text{and} \quad \overline{x}$$

$$\int_{-\infty}^{\infty}$$

$$ho$$
 , which is a sum of ho , h

, . , , , , **f**i . , , , ,

 $\mathbf{T}_{\mathbf{r}}$, $\mathbf{r}_{\mathbf{r}}$, $\mathbf{r}_{\mathbf{r}}$, $\mathbf{r}_{\mathbf{r}}$, $\mathbf{r}_{\mathbf{r}}$

$$ho_i \cdot \qquad heta_i \cdot \qquad
ho_i \qquad \qquad heta_i$$

amplitude instantaneous phase $\theta' \geqslant \theta' \leqslant \dots$ fininstantaneous frequency U $\theta' \geqslant \theta' \leqslant \dots$ fininstantaneous fin

$$-\qquad \qquad \qquad -\frac{1}{\pi}\int_{-\pi}^{\pi} \qquad \left(\frac{-}{1}\right)$$

$$- \quad \sum_{-\infty}^{\infty} - \quad \sum_{-\infty}^{\infty} - \quad \sum_{-\infty}^{\infty} \quad \sum_{-\infty}^{$$

Theorem 1.1

The state of the

... T ... T

$$\tau$$
, $\frac{-}{-}$, θ , $\frac{-}{-}$

$$\frac{1}{\sqrt{\pi}}\int_{-\infty}^{\infty} e^{-\theta} e^{-\theta} = -\sqrt{\pi} \delta_{0} \qquad \frac{\sqrt{\pi} - |\cdot|}{\pi} \sum_{i=1}^{\infty} -\delta_{i} = -\sqrt{\pi} \delta_{i}$$

$$\frac{1}{\sqrt{\pi}}\int_{-\infty}^{\infty} d^{2}x d^{2}x$$

$$\sum_{i=1}^{\infty}$$

$$\sum_{-\infty}^{\infty}$$

Theorem 1.2

 $ho_{p} = \theta_{p} = -\theta_{p}$

Proof

$$\theta_1 = \theta_2 + \theta_3 + \theta_4 = \theta_4$$

- L

$$\rho_{i} \cdot \rho_{j} \cdot \theta_{i} \cdot \rho_{i} = \rho_{i} \cdot \theta_{j}$$

$$(a, b, \cdots, a, -\theta) \cdot (a, -$$

 \mathbf{T}_{i} , \mathbf{r}_{i}

$$\rho_{p} \cdot \rho_{p} \cdot \rho_{p} = \theta_{p} \cdot \rho_{p} = \rho_{p} \cdot \rho_{p}$$

U A VA U TA U T

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
convex domains convex fund	ctions
De nition 2.2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
T. T	
,	··, , , , , , , , , , , , , , , ,
	D., T
,, · · · · · · · · · · · · · · · · · ·	•. ,
T . * normaliz	* * *
* A. fi	T
De nition 2.3 ρ θ \leq \leq π	$ ho\geqslant 1$
$\int_{0}^{1/\pi} ho_{i} = e^{i\theta_{i}}$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-1 π
A T	
Theorem 2.1 ρ θ θ ρ θ	
T	
© &	Math. Meth. Appl. Sci. 29

Theorem 2.2

Proof

$$-\sum_{i=1}^{n} -\sum_{j=1}^{n} -\sum_{i=1}^{n} -\sum_{j=1}^{n} -\sum_{i=1}^{n} -\sum_{j=1}^{n} -\sum_$$

 ∞ , , . . . , .

$$\frac{1}{2}$$
 $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$

De nition 2.4

. . . . fi

Theorem 2.3

Example 2.1 The Circle Family

 $\mathbf{T}_{i,i}$, $\mathbf{X}_{i,j}$, $\mathbf{X}_{i,j}$, $\mathbf{X}_{i,j}$, $\mathbf{X}_{i,j}$, $\mathbf{X}_{i,j}$, $\mathbf{X}_{i,j}$

 \mathbb{D} \mathbb{D}

$$\frac{1}{\sqrt{|-||_{+}||_{+}||_{+}}} = \frac{1}{\sqrt{|-||_{+}|||_{+}|||_{+}|||_{+}|||_{+}|||_{+}|||_{+}|||_{+}|||_{+}|||_{+}|||_{+}|||_{+}|||_{+}|||_{$$

A argument principle T $T_{\perp} T_{\perp} \Omega$

$$- \frac{1}{2} \left\{ \begin{array}{ccc} 1 & 1 & 1 \\ 1 & 1 & 1 \end{array} \right\} \quad \frac{\theta}{-} \geqslant 1$$

 $T_{\text{c}} = \{ 1, \dots, n \}$

$$e\left\{\frac{r}{r}\right\}\geqslant \in \mathbb{D}$$

$$\int \frac{1-\zeta}{\zeta} \zeta$$

$$\sum_{i=1}^{\infty}$$

$$*$$
, $\sum_{i=1}^{\infty}$

$$\sum_{j=1}^{\infty} \frac{1}{j}$$

and the second of the second o

$$\int_{-\infty}^{1} \frac{\pi}{2\pi} \frac{1}{1-\pi} = -\infty$$

$$\int_{-\pi}^{\pi} \alpha \qquad \qquad \alpha \qquad -\alpha \qquad \qquad \alpha \qquad -$$

 $T_{\text{cons}} = (1, 1, \dots, n_{\text{cons}}) + (1, \dots$

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{\pi}{1-\frac{1}{2}} = \frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} \right)$$

,.. T T . . .

Theorem 3.1

 $x_{i,j} = (x_{i,j} + x_{i,j}) + (x_{i,j} + x_{i,j} + x_{i,j}) + (x_{i,j} + x_{i,j} + x_{i,j} + x_{i,j}) + (x_{i,j} + x_{i,j} + x$

$$\frac{1}{1+\frac{1}{2}}\rho_{i} + \rho_{i} + \rho_{i}$$

$$ho_{i}$$
 , ho_{i} , ho_{i} , ho_{i} , ho_{i} , ho_{i}

 $T_{\text{const}} = \sum_{i=1}^{n} \left(\frac{1}{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \left(\frac{1}{n} \sum_{i=1}^{n} \left(\frac{1}{n} \sum_{i=1}^{n} \left(\frac$

Lemma 3.1

$$\epsilon
ightarrow \sim \frac{\pi}{\pi} \int_{\epsilon} \int_{\epsilon - |-|} \int_{\epsilon} \int_{\epsilon}$$

Proof

$$\frac{1}{\pi} \epsilon \rightarrow -\infty \int_{-\pi \pi} \int_{\mathbb{R}^{-}} \left(\sum_{k=1}^{\infty} \frac{1}{-x} - \frac{1}{\pi} \right) \times x$$

$$\frac{1}{\pi} \epsilon \rightarrow -\infty \int_{-\pi \pi} \int_{\mathbb{R}^{-}} \left(\sum_{k=1}^{\infty} \frac{1}{-x} - \frac{1}{\pi} \right) \times x$$

$$\frac{1}{\pi} \epsilon \rightarrow -\infty \int_{-\pi \pi} \int_{\mathbb{R}^{-}} \left(\sum_{k=1}^{\infty} \frac{1}{-x} - \frac{1}{\pi} \right) \times x$$

	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	$\frac{1}{1-\frac{1}{2}} = \frac{1}{1-\frac{1}{2}} = \frac{1}{1-1$
	$-\left(\frac{1}{\sqrt{1-\kappa}}\right) - \frac{1}{\pi} $ $ T_{1} = \frac{1}{2} \left(\frac{1}{\sqrt{1-\kappa}}\right) - \frac{1}{\pi} $
	$ \theta$ $+$ α $+$ α $+$ θ' $+$ α $+$ $+$ $+$ $+$ $+$
	T_{1}
1	T Journal of Integral Equations and Applications 17 IEEE Transactions on Signal Processing T A Physica D 203 T A Journal of Mathematical Analysis and Applications
	et al T Proceedings of the Royal Society London Series A 454 T T International Journal of Wavelets Multiresolution and Information Processing 3
1	A Proceedings of the IEEE 51 The Bieberbach Conjecture A A Geometric Theory of Functions of a Complex Variable T A Univalent Functions V Univalent Functions A Univalent Functions Bounded Analytic Functions A