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SUMMARY

This note further carries on the study of the eigenfunction problem: Find F(t)= (t)e' ® such that
Hf= —if, (t)>0and ’(t) >0, ae. where H is Hilbert transform. Functions satisfying the above
conditions are called mono-components, that have been sought in time-frequency analysis. A systematic
study for the particular case =1 with demonstrative results in relation to Mobius transform and
Blaschke products has been pursued by a number of authors. In this note, as a key step, we characterize
a fundamental class of solutions of the eigenfunction problem for the general case > 0. The class
of solutions is identical to a special class of starlike functions of one complex variable, called circular
H-atoms. They are building blocks of circular mono-components. We rst study the unit circle context,
and then derive the counterpart results on the line. The parallel case of dual mono-components is also
studied. Copyright © 2006 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In signal analysis one has been trying to understand, for a given signal, what are its instan-
taneous amplitude, instantaneous phase, and instantaneous frequency. A signal, denoted by
T(t), stands for a real-valued locally (Lebesgue) integrable function. A common approach
to nd the instantaneous objects is as follows. First, one introduces the associated analytic
signal, AF(t) =F(t) + iHF(t), where HF is the Hilbert transform of F, being assumed to
exist. Hilbert transform is formally de ned by the principal value singular integral

HT(t) =p:v: 1 /Oo 2 ds
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1188 T. QIAN

which has the Fourier multiplier form

oo

Hf(t):zi / e {(—isgn( )F( )d
where Fourier transform is de ned by
()= / e~ UE(t) dt

and sgn is the signum function that takes value 1 if ¢0; and -1 if jO.
AT may be written in the form AF(t)= (t)e' ©, with (t) >0, a.e. Consequently,

T = (Hcos (V) (€)

Note that AF satis es the relation

H(AF)= —iAF )

Taking into account the relation H2= — I, where | stands for the identity operator, (2) is
equivalent to

H( ()cos (DO = (O)sin (1) 3

With the uniquely determined modulation (1), one calls (t) and (t) the 81 @4 ne us

a m,mull: and 1181 &1 1 us pr 59, respectively, provided ‘(t) >0, or ‘(t) <0, a.e. Should

the conditions be satis ed, then function ‘(t) is de ned to be the quali ed 181 a1 ne us

Jrousn . Unfortunately, the requirements ’ > 0 or ’ < 0 are hardly met, and the de nitions

of instantaneous amplitude, phase and frequency via the associated analytic signal A¥ can be
erroneous.

In Reference [1] we explore connections between eigenfunctions of Hilbert transformation
and functions in Hardy HP spaces. Denote by S for S=D or S=C™, the earlier being the
open unit disc and the latter being the upper-half complex plane. In this notation Hg stands
for He+ or Hp, where He+ is the standard Hilbert transformation, H, on the line, and Hp
is the circular Hilbert transformation, H, on the circle. The circular Hilbert transformation is
de ned through

HF(t) =p:v: ZL [ cot (t—zs) T(s)ds

with the Fourier multiplier form based on the Fourier expansion of F(t):

HED= 3> —isgn()ee™; FO= > el

k=—oc0 k=—o00

The following result is proved in Reference [1, Theorems 3.2 and 4.3].
f‘a wm 1.1

he function F(t)= (t)(c(t) +is(t)), with >0and €cLP(S);1<p<oo, 2 +s2=1, s
the boundary value of a function in HP(S) if and only if Hs( ¢)= s modulo constants.

Note that when S=C* and p =oc the Hilbert transformation takes the distribution sense.
The theorem will be recalled in the proofs of our main results below.

Copyright © 2006 John Wiley & Sons, Ltd. a WM: _ﬁrpk A L 2L 2006; 29:1187-1198
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In References [1-4] a systematic study on the unimodular case =1 is carried out. In
this paper we extend the study to the general non-unimodular case. We found that the well-
established theory of starlike functions in one complex variable best ts to our need. Boundary
values of starlike functions provide easily accessible circular mono-components. We now
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In References [3,4] we establish the theory of non-linear Fourier atoms ¢ «®, 0 <t <2 ,
where a is any complex number in D, and 4 is an absolutely continuous and strictly increasing
function with (2 )— 2(0)=2 , and /(t) is the Poisson kernel for the unit disc at the point
a, and therefore positive. The function , is de ned through a typical Mobius transform ,
sending a to zero:

it
228, o= o8
1-az 1 —aet

a(2)= )
It was shown that e' = is a circular H-eigenfunction that is equivalent to H cos ,(t) =sin a(t)
modulo constants. Note that when a=0, e' «® =¢it, The nite product of k copies of e'
is e, A generalized Fourier series and weighted Fourier transform theory are studied in
Reference [4]. This simplest unimodular case, viz. =1, is further extended to nite products
of non-linear Fourier atoms corresponding to nite Blaschke products, as given in
Reference [1].

One can introduce two types of mono- and dual mono-components on the real line based on

nite Blaschke products on the circle. One is periodic extensions of the functions on [0;2 ]
inherited from the nite Blaschke products on the circle; and the other is images of those
functions under Cayley transformation (see Section 3). The latter type was previously studied
in Reference [2] based on a di erent approach. Apart from the systematic study in References
[1,3,4], some related aspects in wavelet theory are developed in References [6,7]. We cite the
following spectrum results for the two types of mono-components [6]. They will be recalled
in Section 2.

Viewing e' :® as a periodic function on the line, we have [6]

\/12* /i e Vetdt=—v2a ()+ L(laf 20 a (-n (6)

k=1

On the other hand, denoting by e' «® the image of the non-linear Fourier atom e' «® under
Cayley transform, we have [6]

where H( ) is the Heaviside function.

We note that in either of the two cases the spectrum contains non-trivial impulse at the
origin. This prevents from direct use of Bedrosian’s Theorem [8] in deducing mono- or dual
mono-components  (t)e' =® or (t)e' «® with general > 0.

In below we give some remarks on dual mono-components.

When expending ¥ < L?([0;2 ]) into its Fourier series

7

F(t) =ap + > ax coskt + by sinkt
k=1
or its complex Fourier series

fH)= > e

k=—o0

Copyright © 2006 John Wiley & Sons, Ltd. a WM: _ﬁrpk A L 2L 2006; 29:1187-1198



MONO-COMPONENTS FOR DECOMPOSITION OF SIGNALS 1191

the entries sinkt = cos( =2 — kt) and e~™; k¢,0, are dual circular mono-components. These
can be veri ed directly, or derived from Theorem 1.2 (see below). They are also dual mono-
components on the line if they are considered as periodic functions (see Section 3). The
following result allows us to merely concentrate to the non-dual case.

S em 12
t)el © is a (circular) mono-component if and only if (t)e=' ® is a dual (circular) mono-
component.

4
v f _
Assume that F(t)= (t)e' ® is a mono-component. We have

H( ()cos (DO = (©)sin (D)

and, since H2= —1,

H(C ()sin ()(®= - (H)cos (1)

They can be re-written as

H(C ()cos(— (ONM)= - ®sin(—= 1), H( ()sin(= (N® = (t)cos(— (1))

The last two relations are equivalent to

H( (.)e—i ())(t) =j (t)e_i ®

Therefore, (t)e~' ® is a dual H-eigenfunction. Since >0;- ' <0, it is a_dual mono-
component. The argument is reversible. For the circular case we replace H by H. The proof
is complete. O

We show that for k¢, 0, sinkt is a dual (circular) mono-component. In fact, Theorem 1.2
implies that ie—™ is a dual (circular) mono-component. Therefore, sin kt =Re(ie~™¥!) is a dual
(circular) mono-component. In general, F=u+iv is a dual (circular) eigenfunction if and
only if Hsu= —v.

The writing plan of the paper is as follows. Section 2 is devoted to our main results in
relation to starlike functions. In Section 3 we deal with mono-components on the line.

The author wishes to acknowledge his sincere thanks to Sheng Gong who kindly recom-
mended comprehensive references on starlike functions in one and several complex variables.
I wish to take this opportunity to thank Jing-xin Yin and Gui-fang Xie for their very kind
and constant help in supplying me the necessary references.

2. BOUNDARY VALUES OF STARLIKE FUNCTIONS

This section deals with the circular case. In below, a connected and open set of the complex
plane C is called a # @z 1. A function F is said to be umv J<na if it takes di erent values at
di erent points. Our de nition for starlike domains, and therefore that for starlike functions,
takes a narrower sense, that is, starlike with respect to the pole z=0.

Copyright © 2006 John Wiley & Sons, Ltd. a WM: _ﬁrpk A L 2L 2006; 29:1187-1198
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Difirua n 2.1
A domain is said to be starlike if 0e ,andtze ; O§tj§l, whenever ze . A univalent
and holomorphic function ¥ : D — F(D) is said to be starlike if (D) is starlike and ¥(0) =0.

Closely related are, % dan insand, w¥7 fin 2t ns.

Difiriar n 2.2

A domain is said to be convex, if 0e ,and tz;+(1-t)z,e ,0§tjil, wheneverz;z, e

A univalent and holomorphic function ¥: D — (D) is said to be convex, if F(D) is convex
and F(0)=0.

Clearly, a convex domain is a starlike domain, and a convex function is a starlike function.
The Taylor expansion of a starlike function is of the form

g@)=aiz+az®+---+a,"+---; |z]il 8)

We denote by S the class of univalent and holomorphic functions in D having the Taylor
expansion

g@)=z+a’+---+az"+---; 7§l 9

The totality of starlike functions in S is denoted by S*, and the totality of convex functions
in S is denoted by C. It may be shown that C is a proper subclass of S*, and S* is a
proper su’bclass gf S. We call functions in S* n #n jz <d&s i < fiun a ns; and those in C
nomn i <A k¥ fur a0 ns. There has been a deep study with fruitful results on the classes
C, S* and S. Among literature on starlike functions we refer to References [9-13]. The most
striking feature of the subtle analysis on the classes C, S* and S would be its connections
with Bieberbach conjecture (1916) whose nal and celebrated proof was given by de Branges
in 1984 [9]. In this note we will specify some connections between the mentioned study and
the H-eigenfunction problem. We rst introduce some concepts.

Difirar n 2.3
Let (t) and (t), 0<t<2 , be absolutely continuous, >0, and

Az (t)e' Odt=0 (10)

With the above properties, a function F(t)= (t)e' ®© is called a circular H-atom, if € is a
circular mono-component satisfying (2 ) — (0)=2 ; and, a dual circular H-atom, if ¥ is
a dual circular mono-component satisfying (2 )— (0)= -2 .

As a consequence of Theorem 1.2, the following result addresses the symmetry property
between circular and dual circular H-atoms.

Z _r:'m 2.1 _

t)e' O is a circular H-atom if and only if (t)e=' ® is a dual circular H-atom.

The following results are contained in [10, Section 1, Chapter 10]. If F(z) is holomorphic,
and it univalently maps D into a simply connected region Q whose boundary is a bounded

Copyright © 2006 John Wiley & Sons, Ltd. a WM: _ﬁrpk A L 2L 2006; 29:1187-1198



MONO-COMPONENTS FOR DECOMPOSITION OF SIGNALS 1193

recti able closed Jordan curve, then ¥ continuously extends to D such that on @D it is
absolutely continuous with

dF(e")
dt
where F/(e) is the non-tangential boundary value of ¥/(z) in D. If, moreover, F(z) is starlike,
then both (t) and (t) are absolutely continuous.

For practical reasons we only concern such ideal starlike functions. The importance of
starlike functions lies on the following Theorem.

=ie"F(e"); ae

v wm 2.2
(’I)e‘ ®; 0<t<2,is a circular H-atom if and only if it is the boundary value F(e'*) of a
starlike function ¥(z) whose boundary is a bounded recti able closed Jordan curve.

1(/ f

We rst assume that F(e)= (t)e' ® is a circular H-atom. Owing to Theorem 1.1, it is the

boundary value of a function, F(z), in H>®(D). Since F(e") is absolutely continuous, and
(t) is non-decreasing, moving from (0) to (0) +2 , the rdirm<na puar 1p< implies that

T is univalent. The non-decreasing property of implies that (D) is starlike with the pole

zero. Through Cauchy’s formula, condition (10) implies that (0) =0. We thus conclude that

T(2) is a starlike function with the required properties.

Now assume that F(et) = (t)e' ® is the boundary value of a starlike function ¥(z), where
T(D) is a starlike domain with the pole zero whose boundary is a bounded recti able closed
Jordan curve. Obviously, ¥(z) is in H>°(D). Theorem 1.1 then asserts that its boundary
value is a circular H-eigenfunction. Owing to the results in Reference [10] recalled before
the statement of the theorem, both and are absolutely continuous. As the boundary of a
starlike domain, the quantity arg(F(e")) = (t) is non-decreasing, and its derivative is non-
negative. This implies that the angle (t) increasingly goes from (0) to (0)+2 as t goes
increasingly from 0 to 2 . Condition (10) is a consequence of Cauchy’s formula and £(0) =0.
We thus conclude that F(e") is a circular H-atom. The proof is complete. O

It is noted that, since F(z) =a;z + a,z? + - -, in the second part of the proof the fact that
T is a circular H-eigenfunction can also be derived from the Fourier multiplier expression of
the circular Hilbert transformation. That is,

HFEO) ) = 3 — isgn(k)ae’ = — if(e")
k=1

We note that in complex analysis the normalized starlike functions with respect to the pole
oo are of the form
— bl bZ
f(z)—z+bo+7+z—2+--- (11)
This is mainly for a geometrically symmetric theory for starlike functions with respect to
the pole oo. In particular, with form (11), when z=¢e" goes along the unit circle in the
anticlockwise direction, then F(e') goes along the boundary of (D) anticlockwise as well.
For the theory of dual mono-component we, however, adopt the following de nition that is
analytically symmetric, and works well with Hilbert transform.

Copyright © 2006 John Wiley & Sons, Ltd. a WM: _}Z;J: A L 2L 2006; 29:1187-1198
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Difirua n 2.4
A function F(z) is said to be starlike with respect to the pole co if F(1=2) is starlike (with
respect to the pole zero).

With this de nition we have the counterpart result for dual circular H-atoms.

S @m 2.3

t)e' ®, 0<t<2,is adual circular H-atom if and only if (t)e'®, 0<t<2 , is the
boundary value F(e") of a starlike function ¥(z) with respect to the pole oo, whose boundary
is a bounded recti able closed Jordan curve.

‘1 m,}:“ 2.1 (g":' Ct,f]:*aF mj )
The simplest eXample would be the circle family. Any fractional-linear transformation

az

W:f(z):702+d

that maps D into a disc F(D)>0, ¥(0)=0, with the consistent orientation as t rotates
from 0 to 2 under the parametrization z=¢", will give rise to a circular H-atom. We now
form this family in a systematic way using Mobius transform. The Mobius transform ,(z) =
(z — a)=(1 — az) has the power series expansion

a(2)= —a+biz+hbyz+---

where b; =1 — [a]?¢.0. We construct
1
Ta.(2) = E( a(2) ta)= (12)

This function is in the class C. It maps discs in D into discs. The images F.(D;); Dy =rD;
Og§ril, are discs not centred at z=0 if a # 0. Indeed,

z
1-az

; r : i(t—ta)
f relt — e|(t7arg(17r|a\e )
(re) V/1—2rfa|cos(t — t,) + [a]2r?

where a=|aje'=. It follows from Theorem 2.2 that for every xed r: 0jr i1, the function
fa(re) is a circular H-atom. The mapping can be extended to r : 1 <r j1=|a|, and the
diameter of the disc F(D) passing through 0 is divided by O into two parts with lengths,
respectively, r=(1 —r|a|) and r=(1 +r|a|). So, the closer the number r|a| to 1, the closer the
pole zero to the boundary of the image circle.

One can similarly formulate the ellipse family and the Casimire curve family.
As a consequence of the = ydim<nt pur 1< b Tfons9ite2(principloducts2(of)-464.2(the)] Tar)]TJ /F(a)-46
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such a product is the sum of the arguments of the boundary values of the factor starlike
functions, and therefore is non-decreasing and absolutely continuous. Hence, nite products
of circular H-atoms are circular mono-components. For dual circular H-atoms the proof is

similar.

0

The established theory on the classes S, S* and C provides a source of starlike functions
with a great variety. The basic references are [9-13]. Reference [13], in particular, provides
many working examples. We brie y recall, without proof, some results in the literature that
may have signi cant impacts to our study.

0]

(i)

(iif)

It may be shown that if (D) is starlike, then ¥(D;) is starlike for all r € (0;1). In
Example 2.1 on the circle family we assert this fact from the property of fractional-
linear transformations. It, however, holds in general. This implies that when z =re'
traces out the circle |z| =r anticlockwise, then the complex number F(z) = e' must
also traces out a complete circle anticlockwise. It follows that

%arg{f(z)} =

This latter condition implies

Re @) >0, zeD
(o)

This turns to be a su cient condition for starlike domains as well.

It may be shown that a function is convex in D if and only if 1 + z(¥(2))=(F(2))
has a positive real part in D. As a consequence, F(D;); O§ril, is also convex.
Based on this it may be shown that F(z) is convex if and only if F(z) =zF/(z2) is
starlike. Therefore, a convex function ¥(z) has the formula

f(z)=/ozF()d

where F(z) is a starlike function. The last relation also gives rise to a representation
formula for all convex functions (see (iv) below).
If ¥ and g are in class S*, then their weighted product ¥ g ; + =1,0< , <1,
is in S*.

If ¥ and g are in the class C with the expansions

()= ioj an2"; g(2)= ioj bnz"
n=1 n=1
then their Hadamard product (also called Hadamard convolution)

(F+0)@) = fl agbyz"

‘ (&)

=0

()]

t

is in C.
If ¥ and g are in the class S*, then the modi ed Hadamard product

(Foo@=3 2

is in S*.

Copyright © 2006 John Wiley & Sons, Ltd. a4 _ﬁrpk A L 2L 2006; 29:1187-1198
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(iv) If P(z) is holomorphic with positive real part then there holds Herglotz’s formula:

2 it
P(z)=/0 Tt

where (t) is a non-decreasing function satisfying

/2 d =1 and ()=1[ (t+0)+ (t—0)] (13)
0

There is a one-to-one relationship between the functions P(z) and (t).

Based on Herglotz’s formula one has the representation formula for starlike func-
tions: a function ¥ is starlike in D if and only if

F@)=1zexp (2/2 log T 1—'tz d (t))
0

where is a non-decreasing function satisfying (13). Theoretically, the formula pro-
vides all starlike functions with the pole zero.

(v) It is an interesting fact that if ¥(z) is in S, then for small enough r¢ 0 the image
T(rD) is starlike, and therefore F(rz) is in S*. One can show that there exists a
positive number, Rt = (e 2 — 1)=(e 2 + 1) ~0:65579, calleda ; dus [ @1 i nss,
such that whenever r < Rst the image F(rD) is starlike for all ¥ € S. The number
Rst is sharp in the sense that if r¢ Rst, then there exists a function ¥ € S such that
T(rD) is not starlike.

For the class S there is also a sharp constant, Rcy =2 — v/3~0:26 - - -, callede r us [
P 799- i, such that whenever r < Rcy the set F(rD) is convex for all ¥ e S.

3. MONO-COMPONENTS ON THE LINE

It is the identical relationship given in Theorem 2.2 between circular H-atoms and certain star-
like functions that motivates the de nition of circular H-atoms. There is no counterpart con-
cepts on the line. In this section we will induce mono-components and dual mono-components
on the line based on those obtained on the circle.

¢ wm 3.1
!s(sume that F(t)= ()¢’ ®; 0<tj2 , where €LP([0:2 )); 1<p < oo. Then,

(i) for 1 < p < oo, F(t) is a (dual) circular mono-component if and only if F(t)= (t)
el O: —o0o jt i oo, is a (dual) mono-component on the line, where and are extended
to satisfy (t+2 )= (f)and (t+2 )= (t)+2 .

(if) for 1 < p j oo, the function

(52+11)1=p (2arctan s) € LP(R)

Copyright © 2006 John Wiley & Sons, Ltd. a WM: _ﬁrpk A L 2L 2006; 29:1187-1198



MONO-COMPONENTS FOR DECOMPOSITION OF SIGNALS 1197

and, if F(t) is a (dual) circular mono-component, then

1 . . _ .
F(S) — (32 - 1)1:p (2 arctan S)el( (2 arctan s)+(2=p) arccos(—s=v/s2+1)—(2 -p)); —0 §Sioo

is a (dual) mono-component on the line.
(iii) for p=o0, F(t) is a (dual) circular mono-component if and only if

F(s)= (2arctan s)e' a9 _ o §sjoo

is a (dual) mono-component on the line.

The proof of (i) of the theorem is based on the following lemma.

& immn 3.1 )
Let FeLP([- ; )), 1<p < oo, and F be the 2 -periodic extension of F to the real line.
Then HF is 2 -periodic, and, restricted in [— ; ), HF=HT, where HT is de ned by

HFD) =  lim = / T6) 4
€—=0;N—oo €ift—s| § @N+1) t—s
1(/ f

It may be easily shown (also see Reference [4] or [1] or [6])

1 . " N 1
HFf(t) == Ilim / ——— | F(x)dx
( ) €—0;N—o00 (= HN{Ix—t|e€} (k:z_:N t—x—2k ) ( )

1.
=—I|m/
2 20 J_  yn{lx—t| e }243184Tm 4f
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11.
12.
13.
14.

the function F(w) = (1=(w +i)>P)F( (w)) e HP(C*) (see Reference [14] or [1]), and
therefore its boundary value is an H-eigenfunction (Theorem 1.1). The boundary value
of the induced weight factor 1=(w + i)%P is

1 — 1 ei[(2:p) arccos(—s=v/s2+1)—(2 =p)]
(s+i)zp  (s2+1)¥p

with the frequency

9 (2 accos(—=2_)-2)=2_1 ~
ds \ p V2 +1 p) pl+s”~
The frequency of the F( (s)) part is

d o, 2
£( (2arctans)) = ‘(2arctan s)m >0

Putting them together, the frequency of F(s) is non-negative. Hence, F(s) is a mono-
component. For p=oc the argument is reversible. The proof is complete. O
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