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Abstract

We prove that a sufficient and necessary condition forHeiΘ(s) = −ieiΘ(s), whereH is Hilbert
transformation,Θ is a continuous and strictly increasing function with|Θ(R)| = 2π , is thatdΘ(s) is
a harmonic measure on the line. The counterpart result for the periodic case is also establish
study is motivated by, and has significant impact to time–frequency analysis, especially to asp
analytic signals inducing instantaneous amplitude and frequency. As a by-product we introd
theory of Hardy-space-preserving weighted trigonometric series and Fourier transformations i
by harmonic measures in the respective contexts.
 2005 Elsevier Inc. All rights reserved.
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1. Introduction

In time–frequency analysis the concept of analytic signals is introduced (see [6]
a square integrable signalf in the whole time range, the functionf + iHf , whereH

is Hilbert transformation on the line, is the boundary value of an analytic function i
upper-half complex plane. This may be easily verified from Cauchy’s integral on the u
half complex plane with the boundary dataf. DefineA(f ) = f + iHf to be theanalytic
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signal associated withf. For periodic functions there is an analogous theory. On the s
of square integrable signals on[0,2π] one definescircular Hilbert transformation, H̃ (see
Section 2), and defines̃Af = f + iH̃f to be the associated analytic signal, that is
boundary value of an analytic function inside the unit disc. Analytic signals in the
contexts can be further written in the complex-valued amplitude–frequency modu
form ρ(t)eiθ(t), whereρ(t) � 0 is theinstantaneous amplitude, θ(t) is theinstantaneous
phase, andθ ′(t) is theinstantaneous frequency of the original real-valued signalf. In such
a way Hilbert transformations in the two contexts play important roles in time–frequ
analysis. We note that the operatorÃ may also be defined for complex-valued signals
the same way. Now what is interesting is the following question: For what functionsρ(t)

andθ(t) is the functionρ(t)eiθ(t) analytic? This paper gives an answer to the question
the particular caseρ ≡ 1.

It may be easily verified, using the propertỹH 2 = −I (modulo constants), whereI de-
notes the identity operator, that iff is a real-valued signal, theñA2f = 2Ãf. The following
more general result is helpful.

Theorem 1.1. A complex-valued signal f is an analytic signal if and only if Ãf = 2f

(modulo constants).

Proof. If f is analytic andf = g + iH̃g, then

Ãf = (g + iH̃ g) + iH̃ (g + iH̃ g) = g − H̃ 2g + 2iH̃g = 2(g + iH̃ g) = 2f.

On the other hand, if̃Af = 2f andf = g + ih, then

(g + ih) + iH̃ (g + ih) = 2(g + ih).

This reduces to

−H̃h + iH̃ g = g + ih.

By comparing the imaginary parts of the two sides of the last relation we haveh = H̃g,
and sof = g + iH̃ g, being analytic. The proof is complete.�

The periodic version of Bedrosian’s theorem [1,9] asserts that ifρ(t) is real-valued
of low frequencies andeiθ(t) of high frequencies, as generally expected in practice,
Ã(ρ(t)eiθ(t)) = ρ(t)Ãeiθ(t). The question thus reduces to finding conditions that gua
tee eiθ(t) to be analytic, or, according to Theorem 1.1,Ãeiθ(t) = 2eiθ(t). Should this be
true, we consequently havẽA(ρ(t)eiθ(t)) = 2ρ(t)eiθ(t). Invoking Theorem 1.1 again w
obtain that the complex signalρ(t)eiθ(t) is analytic. This observation shows that the ca
corresponding toρ ≡ 1 are, in fact, of particular importance.

On the unit circle (the periodic case) the relationÃeiθ(t) = 2eiθ(t) is equivalent to

H̃ cosθ(t) = sinθ(t) and H̃ sinθ(t) = −cosθ(t).

On the real line the counterpart relation is equivalent to

H cosθ(t) = sinθ(t) and H sinθ(t) = −cosθ(t).





T. Qian / J. Math. Anal. Appl. 314 (2006) 526–536 529

the

l to
Circular Hilbert transformation has a singular integral representation:

H̃f (t) = 1

2π
p.v.

π∫
−π

cot

(
t − s

2

)
f (s) ds, a.e. (4)

Some basic knowledge of the Hardy spaces in the unit disc,H p, 0 < p � ∞, and of
inner functions will be used for which we refer the reader to [10] or [2]. In below
notation|E| for a given measurable setE stands for the Lebesgue measure of the setE.

Theorem 2.1. Assume that θ is a continuous and strictly increasing function on [0,2π]
with |θ([0,2π])| = 2π. Then the following two conditions are equivalent.

(i) dθ(t) is a harmonic measure on the unit circle.

(ii) H̃ cosθ(t) = sinθ(t) and H̃ sinθ(t) = −cosθ(t) − a (5)
for some a ∈ D.

Proof. (i) → (ii) A harmonic measure is associated with a Möbius transformτa(z) =
(z − a)/(1 − az), a ∈ D, and we may writeθ(t) = θa(t), whereθa is defined through
τa(eit ) = eiθa(t). It may be easily computed (or see [2]) that

1

2π

dθa(t)

dt
= 1

2π

1− |a|2
1− 2|a|cos(t − ta) + |a|2 = pa(t) > 0, (6)

wherea = |a|eita , andpa is the Poisson kernel for the pointa ∈ D.

Note thatτa is an analytic function in a neighborhood ofD̄. By invoking the relation (2)
for f = f + = τa , we have

iH̃ τa = τa − τa(0).

Due to the factτa(0) = −a, the last relation reads

iH̃ eiθa(t) = eiθa(t) + a,

or

H̃ cosθa(t) = sinθa(t) and H̃ sinθa(t) = −cosθa(t) − a.

(ii) → (i) The assumptions onθ imply thateiθ(t) ∈ L2(∂D) and

iH̃ eiθ(t) = eiθ(t) + a.

So,

eiθ(t) + iH̃ eiθ(t) = 2eiθ(t) + a. (7)

The left-hand side of (7), due to (2), is equal to

2(eiθ(t))+ − c0, (8)

where we denote by(eiθ(t))+ the Hardy space projection ofeiθ(t), andc0 the constant term
of the Fourier expansion ofeiθ(t). On the other hand, the right-hand side of (7) is equa

2(e
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Comparing (8) and (9), we have

−c0 = (2eiθ(t))− + a.

Therefore,

c0 = −a and (2eiθ(t))− = 0.

The last two relations show thateiθ(t) itself is the boundary value of an analytic function,f ,
in D, with f (0) = −a.

Next we showf (D) ⊂ D. First,f ∈ H 2 andf |∂D(t) = eiθ(t) ∈ L∞ imply f ∈ H∞ [2].
Sincef |∂D is unimodular, we obtain thatf is an inner function. From the factorizatio
theorem of inner functions we havef = cBS, wherec is a constant with|c| = 1, B is a
Blaschke product andS a singular function [2]. The fact that Möbius transforms mapD
into D impliesB(D) ⊂ D. As for any singular functionS we have

log
∣∣S(z)

∣∣ = −
∫

Pz(θ) dµ(θ) < 0,

wheredµ is a nonnegative Borel measure. ThereforeS(D) ⊂ D, and thusf (D) ⊂ D.

Now we show thatf is bijective fromD to D. Sincef is an inner function, it is the
Poisson integral of its boundary valueeiθ(t) [2, Chapter 3, Corollary 3.2]. This, togeth
with the fact that the boundary value is continuous, implies thatf is continuously extende
to the closure of the unit discD ∪ ∂D. From this we obtain thatf only has at most finitely
many zeros inD, for if there were infinitely many zeros then there should exist clu
points which were either insideD or on the boundary∂D. Both, however, are impossib
due to the unimodularity. The assumptions of the theorem then imply that the circle∂D is
the continuous and injective image of itself with the same orientation. The Argument
ciple may be extended to conclude that the analytic mappingf : D → D is bijective, and so
f ∈ Aut(D), the analytic automorphic group ofD, and thusf is a Möbius transform [3]
Sincef (0) = −a, for somet1 ∈ R, it is of the form

f (z) = eit1τae−it1 (z),

and therefore

eiθ(t) = e
i(t1+θ

ae−it1 (t))
.

Consequently,

dθ(t) = dθae−it1 (t),

being a harmonic measure. The proof is complete.�
The functionsθa may be continuously extended to the real line modulo the cond

θa(t + 2π) = θa(t) + 2π . The extended functions have continuous 2π -periodic derivatives
p̃a(t). Corresponding toθa , the period functionseiαθa , α > 0, except for the trivial cas
a = 0 corresponding toeiαt , are not included in the general form of Picinbono [7],
which the derivatives of the phase functions are not periodic. The single componen
of Picinbono’s phase functions coincides with what is studied in Section 4, of whic
derivatives of the phases are the Poisson kernels of the real line.
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Theorem 2.2. With the periodic extensions of cosθa(t) and sinθa(t) to the real line, we
have

H cosθa(t) = sinθa(t) and H sinθa(t) = −cosθa(t). (10)

Proof. First we note that in the principal value integral sense the Hilbert transform
well defined for the oscillatory functions cosθa(t) and sinθa(t). Using the identity (see [8]

lim
N→∞

N∑
k=−N

1

x − t + 2kπ
= 1

2
cot

(
x − t

2

)
,

we have

p.v.
1

π

∞∫
−∞

1

x − t
cosθa(t) dt = p.v.

1

π

2π∫
0

∞∑
k=−∞

1

x − t + 2kπ
cosθa(t) dt

= p.v.
1

2π

2π∫
0

cot

(
x − t

2

)
cosθa(t) dt = H̃ cosθa(t).

The desired relation for cosθa(t) then follows from Theorem 2.1. The assertion
sinθa(t) may be proved similarly. �

3. Analytic weighted trigonometric systems

As shown in Section 2, every complex numbera ∈ D is associated with a Möbius tran
form τa , and correspondingly a Poisson kernelpa(t). The functionθa defined from the
relationeiθa(t) = τa(eit ) satisfiesθ ′

a(t) = pa(t). Writing a = |a|eita
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Theorem 3.1. Let a ∈ D and Fa = { 1√
2π

einθa(t)}∞n=−∞, the corresponding weighted

trigonometric system. Then

(i) Fa is an orthonormal system in L2
a(∂D).

(ii) The Plancherel theorem holds for the system. In particular, the system is complete in
L2

a(∂D).

(iii) Carleson’s theorem holds with respect to the system Fa.

(iv) The mapping θa(t) preserves the Hardy spaces inside and outside the unit circle.

Proof. The assertion (iv) follows from the conformal mapping property of Möbius tra
form. The assertions (i) to (iii) are proved via change of variables = θa(t), as shown in the
following.

(i) Settingea
n(t) = 1√

2π
einθa(t), we have

〈
ea

n, ea
m

〉
a

= 1

2π

2π∫
0

ei(n−m)θa(t)pa(t) dt = 1

2π

2π∫
0

ei(n−m)s ds = δnm,

the Kronecker delta function.
(ii) For any functionf ∈ L2

a(∂D), denote byca
n(f ) thenth Fourier coefficient off with

respect to the weighted trigonometric system:

ca
n(f ) = 〈

f, ea
n

〉
a
.

Through the change of variable it is easy to verify

ca
n(f ) = c0

n(F ),

wherec0
n(F )’s are the standard Fourier coefficients of the functionF (s) = f (θ−1

a (s)) ∈
L2(∂D). Since‖F‖0 = ‖f ‖a , the classical Plancherel theorem forF implies

‖f ‖2
a =

∑∣∣ca
n(f )

∣∣2.

(iii) Carleson’s theorem asserts that

lim
N→∞

N∑
n=−N

c0
n(F )eins = F (s), a.e.

Sincec0
n(F ) = ca

n(f ), s = θa(t) andF (s) = f (t), we obtain

lim
N→∞

N∑
n=−N

ca
n(f )einθa(t) = f (t), a.e.

The proof is complete. �
For differenta the shapes of cosθa(t) (also those of sinθa(t)) are different (see exam

ples in [9]). It is observed that the closer|a| gets to 1, the sharper the graph of cosθa(t)
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along with different choices ofa, to nonlinear and nonstationary time–frequency analy

4. Counterpart results on the real line

Hilbert transformation on the real line will be taken to be of the distributional s
[4,5]: If F (z) = u(x, y) + iv(x, y) is an analytic function in the upper-half complex pla
and u and v are respectively theharmonic representations of distributionsS and T on
the real line, then we say thatT is a Hilbert transform ofS, denoted byHS = T . This
definition, in particular, implies that ifHS = T , then HS = T + c for any constantc.

There will be no ambiguity arising out of this: When we haveHS = T , it means thatT
is a representative among all the Hilbert transforms ofS. Based on this definition, it ca
be proved that any distribution has a Hilbert transform, and, in particular, any bou
measurable function has a Hilbert transform. Note that the above definition coincide
the standard definition of Hilbert transformation for functions in good function cla
such as inLp(R).

The Cayley transformation

w(z) = i − z

i + z

conformally maps the upper-half complex plane to the discD. It maps the real line to th
unit circle through

w(s) = 1− s2

1+ s2
+ i

2s

1+ s2
.

Setting t = 2 tan−1 s, the above readsw(s) = cost + i sint , where t ∈ (−π,π), s ∈
(−∞,∞). Now, if f (t) = cosθ(t)+ i sinθ(t) is the boundary value of an analytic functi
insideD, then

F (s) = cosθ(2 tan−1 s) + i sinθ(2 tan−1 s)

is the boundary value of the image analytic function in the upper-half plane unde
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Moreover, if (i) and (ii) hold, then Θ(s) = A + θa(2 tan−1 s) for some A ∈ R and a ∈ D.

Proof. It may be shown that withΘ(s) = A + θa(2 tan−1 s), θ ′
a(t) is a Poisson kernel o

the circle if and only ifΘ ′(s) is a Poisson kernel on the line. It is, in fact, a biject
mapping between all Poisson kernels on the circle and all those on the line. The p
correspondence reads

1

2π

d

ds
θa(2 tan−1 s) = 1

π

ha

(s − sa)2 + ha
2

= Pha (s − sa),

whereha = 1−|a|2
1+2|a|costa+|a|2 , sa = 2|a|sinta

1+2|a|costa+|a|2 anda = |a|eita .

Next we point out that, from the distributional definition of the Hilbert transform and
properties of the Cayley transformation, the assertion (ii) of the theorem is equivalent
assertion (ii) of Theorem 2.1. The proof is thus complete when invoking Theorem 2.1�

It is a property of the harmonic measures that the mappingsΘ(s) in Theorem 4.1 map
the HardyH p-spaces on the unit circle to the weight HardyH p-spaces on the real lin
with the weightsΘ ′(s)1/p , 0< p � ∞. We refer the reader to [2].

5. Weighted Fourier transformation on the line

Parallel to Section 3 we can formulate a weighted Fourier transformation theory.
For a ∈ D, define

L2
a(R) =

{
f : R → C

∣∣ ( ∞∫
−∞

∣∣f (t)
∣∣2p̃a(t) dt

)1/2

< ∞
}

, (14)

wherep̃a is the 2π -periodization of the Poisson kernelpa on the circle.
Denote by

‖f ‖a =
( ∞∫

−∞

∣∣f (t)
∣∣2p̃a(t) dt

)1/2

the norm off ∈ L2
a(R).

The spaceL2
a(R) forms a Hilbert space under the inner product

〈f,g〉a =
∞∫

−∞
f (t)g(t)p̃a(t) dt.

Note that ifa = 0, then all just defined reduce to the standard case onR.

Define the associated weighted Fourier transformation by

Fa(f )(ξ) = 1√
2π

∞∫
e−iξθa(t)f (t)p̃a(t) dt.
−∞
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Similarly to the series case studied in Section 3, we have the Plancherel theorem
corresponding Fourier inversion theorem that all reduce to the standard case thro
change of variable. We omit the details. We shall, however, cite below the correspo
Poisson summation formula.

For f ∈ L2
a(R) set

f̃ (t) =
∞∑

k=−∞
f (t + 2kπ).

Thenf̃ ∈ L2
a(∂D). In both theL2-convergence and the pointwise convergence sense

f̃ (t) =
∑

ca
k eikθa(t).

We shall show that

Fa(f )(k) = ca
k , k is any integer. (15)

Taking the relation (15) for granted for the moment, we have

f̃ (t) =
∑

Fa(f )(k)eikθa(t).

If, in particular, takingt = t0 such thateit0 =
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