Structure of Solutions of Polynomial Dirac Equations in Clifford Analysis

${ }^{2}$ College of Mathematics and Statistics, Wuhan University, Wuhan, 430072, China;
- Faculty of Science and Technology, University of Macau, Macao

Communicated by J. Ryan
(Received 9 September 2003)

Abstract

In this note, structures of null solutions of the polynomial Dirac operators $D-\lambda, D^{k}, D^{n}+\underset{\substack{n-1 \\ j=0}}{\substack{n j}} D^{j}$ are studied, where D is the Dirac operator in $\mathbf{R}_{1}^{m}, \lambda, b_{j} \in \mathbf{C}, j=0, \ldots, n-1, D^{0}=I$ is the identity operator. Explicit decompositions of null solutions of the polynomial Dirac operators in the respectively relevant subspaces are obtained which are used to derive their Taylor series expansions. The solutions of inhomogeneous equation $p(D) f=g$ are discussed for a special class of $\mathbf{R}^{(m)}$-valued continuous functions g.

Keywords: Dirac operator; M onogenic function; Polynomial Dirac operator
MR (2000) AMS Subject Classifications: 30G35

1 INTRODUCTION

Let $\mathbf{R}^{(m)}$ be the real associative Clifford algebra generated by $\left\{e_{1}, e_{2}, \ldots, e_{m}\right\}$, where the basic vectors e_{1}, \ldots, e_{m} satisfy the relations $e_{i} e_{j}+e_{j} e_{i}=-2 \delta_{i j}, i, j=1, \ldots, n$. Viewed as a linear algebra $\mathbf{R}^{(m)}$ is real 2^{m}-dimensional with the basis dements $e_{0}, e_{1}, \ldots, e_{m}$, $e_{1} e_{2}, \ldots, \ldots, e_{j_{1}} \ldots e_{j_{r}}, \ldots, e_{1} \ldots e_{m}, 1 \leq j_{1}<\cdots<j_{r} \leq m$, where $e_{0}=1$ is the algebraic unit element. Similarly, denote by $\mathbf{C}^{(m)}$ the Complex Clifford algebra generated by $\left\{e_{1}, e_{2}, \ldots, e_{m}\right\}$.

Denote by \mathbf{R}^{m} the real linear subspace of $\mathbf{R}^{(m)}$ spanned by $\left\{e_{1}, e_{2}, \ldots, e_{m}\right\}$. A typical element of \mathbf{R}^{m} is denoted by $\underline{x}=x_{1} e_{1}+\cdots+x_{m} e_{m}, x_{j} \in \mathbf{R}$. Define $\mathbf{R}_{1}^{m}=\left\{x=x_{0}+\right.$ $\left.\underline{x} \mid x_{0} \in \mathbf{R}, \underline{x} \in \mathbf{R}^{m}\right\}$. The Dirac operator in \mathbf{R}^{m} is defined to be $\underline{D}=\underset{j=1}{m} e$

Let Ω be a domain in \mathbf{R}_{1}^{m}. If $f \Omega \rightarrow \mathbf{R}^{(m)}$ is a C^{1} function satisfying $(D f)(x)=$
${ }_{j=0}^{m} e_{j}\left(\partial f / \partial_{x_{j}}\right)=0$, then f is said to be left-monogenic in Ω. The set of left-monogenic functions in Ω forms a right-module denoted by $M_{(r)}\left(\Omega ; \mathbf{R}^{(m)}\right)$. We only consider left-monogenic functions and we omit the subscript (r) in $M_{(r)}\left(\Omega ; \mathbf{R}^{(m)}\right)$ as discussed below. M onogenic functions in \mathbf{R}^{m} are defined similarly.

It is known that in a number of aspects monogenic functions are analogous to analytic functions in onecomplex variable. F or instance, both of them haveCauchy-Green formula, Cauchy integral formula, M aximum M odulus Theorem, M orera's Theorem (see [1]) etc. There have been studies on null solutions of the operators $\underline{D}-\lambda$ [2], $D-M, M$ any bounded operator commuting with all $e_{j}\left(\partial / \partial x_{j}\right)$ [3], $\underline{D}-b(x)$ [4] and D^{k}, \underline{D}^{k} ([5,6]) etc. In [7] fundamental solutions of polynomial Dirac equations $p(\underline{D})=\left(\underline{D}^{n}+\underset{\substack{n-1 \\ j=0}}{ } b_{j} \underline{D}^{j}\right)$ in \mathbf{R}^{m} are constructed. In [8] Ryan obtained the CauchyGreen formula for null solutions of $p(\underline{D})$.

In this article, structures of solutions of $D-\lambda,(D-\lambda)^{k}, p(D)=D^{n}+\underset{\substack{n-1 \\ j=0}}{n} b_{j} D^{j}$ are studied. Decompositions of null solutions of $p(D)$ in therelevant subspaces are obtained with which their Taylor series expansions are deduced. These results reveal that solutions of polynomial Dirac operators in \mathbf{R}_{1}^{m} are closely related to monogenic functions and null solutions of ordinary differential equations $\left(d^{n} / d x_{0}^{n}\right)+\begin{gathered}n-1 \\ j=0\end{gathered} b_{j} \times$ $\left(d^{j} / d x_{0}^{j}\right)=0$. As application, in Section 5 solutions of inhomogeneous equations $p(D) f=g$ are discussed for a special class of $\mathbf{R}^{(m)}$-valued continuous functions g.

2 THE SOLUTIONS OF $(D-\lambda) f=0$

In the following, assume that Ω is a domain (open and connected) in \mathbf{R}_{1}^{m} containing the origin and denote $\Omega_{0}=\left\{x_{0} \in R \mid \exists \underline{x}\right.$ such that $\left.\left(x_{0}, \underline{x}\right) \in \Omega\right\}$. We have
Lemma 1 Let $g \in C^{1}\left(\Omega, \mathbf{C}^{(m)}\right)$ and h be a scalar valued differentiable function defined in Ω_{0}, then

$$
D(h g)=(D h) g+h(D g)=h^{\prime}\left(x_{0}\right) g(x)+h\left(x_{0}\right)(D g)(x) .
$$

Lemma 2 For any $f \in C^{1}\left(\Omega, \mathbf{C}^{(m)}\right), \lambda \in C$, we have

$$
(D-\lambda) f(x)=e^{\lambda x_{0}} D\left(e^{-\lambda x_{0}} f\right)(x)
$$

The above two Lemmas can be proved through direct computation.
Denote $\operatorname{ker}(D-\lambda)=\left\{f \mid f \in C^{1}(\Omega)\right.$ such that $\left.(D-\lambda) f=0\right\}$, where $\lambda \in C$. In below, denote $h\left(x_{0}\right) M\left(\Omega ; \mathbf{R}^{(m)}\right)=\left\{f \mid f=h\left(x_{0}\right) g(x), g \in M\left(\Omega ; \mathbf{R}^{(m)}\right)\right\}$.
Theorem $1 \operatorname{ker}(D-\lambda)=e^{\lambda x_{0}} M\left(\Omega ; \mathbf{R}^{(m)}\right)$.
Proof This is an immediate consequence of $(D-\lambda) f(x)=e^{\lambda x_{0}} D\left(e^{-\lambda x_{0}} f\right)(x)$.
Corollary 1 If $f \in \operatorname{ker}(D-\lambda)$, then in a neighborhood of the origin in \mathbf{R}_{1}^{m},

$$
\begin{equation*}
f(x)=\left.e^{\lambda x x_{0}}{ }_{k=0\left(l_{1}, \ldots, l_{k}\right)}^{\infty} V_{l_{1}, \ldots, l_{k}}(x) \frac{\partial^{k}\left(e^{-\lambda x_{0}} f\right)}{\partial_{x_{1}} \cdots \partial_{x_{k}}}\right|_{x=0} \tag{1}
\end{equation*}
$$

where

$$
V_{0}(x)=e_{0}, \quad V_{l}
$$

2. Suppose that the origin $O \in \Omega$, then there is a neighborhood of O in Ω in which f can be written as

$$
\begin{equation*}
f(x)=\operatorname{lin}_{n=0}^{\infty} \quad j=\left.0 \quad\left(l_{1}, \ldots, l_{n-j}\right) \frac{x_{0}^{j}}{j!} V_{l_{1}, \ldots, l_{n-j}}(x) \frac{\partial^{n-j} D^{j} f}{\partial x_{l_{1}} \cdots \partial x_{l_{n-j}}}\right|_{x=0}, \tag{3}
\end{equation*}
$$

where $\left(l_{1}, \ldots, l_{n-j}\right) \in\{1, \ldots, m\}^{n-j}$.
Since series (3) is absolutely convergent in an open neighborhood of the origin O, it can also be written as

$$
\begin{aligned}
& =\begin{array}{l}
k-1 k-1 \\
j=0 \quad n=j
\end{array}+\begin{array}{ll}
k-1 \infty & \frac{x_{0}^{j}}{j!} V_{n=k} \\
\left(l_{1}, \ldots, l_{n-j}\right)
\end{array}, \ldots,\left.l_{n-j}(x) \frac{\partial^{n-j} D^{j} f}{\partial x_{l_{1}} \cdots \partial x_{l_{n-j}}}\right|_{x=0} \\
& =\left.{ }_{j=0}^{k-1} \frac{x_{0}^{j}}{j!} \quad \infty \quad V_{n=j}\left(l_{1}, \ldots, l_{n-j}\right) \quad V_{l_{1}, \ldots, l_{n-j}}(x) \frac{\partial^{n-j} D^{j} f}{\partial x_{l_{1}} \cdots \partial x_{l_{n-j}}}\right|_{x=0} \\
& =\left.{ }_{j=0}^{k-1} \frac{x_{0}^{j}}{j!} \quad \infty \quad V_{n=0\left(l_{1}, \ldots, l_{n}\right)} V_{l_{1}, \ldots, l_{n}}(x) \frac{\partial^{n} D^{j} f}{\partial x_{l_{1}} \cdots \partial x_{l_{n}}}\right|_{x=0} \\
& ={ }_{j=0}^{k-1} \frac{x_{0}^{j}}{j!} f_{j}(x),
\end{aligned}
$$

where $f_{j}(x), j=0,1, \ldots, k-1$, are monogenic in the open neighborhood of the origin O. We therefore have

Theorem $3 \operatorname{ker}\left(D^{k}\right)$ has the direct sum decomposition:

$$
\begin{equation*}
\operatorname{ker}\left(D^{k}\right)=M\left(\Omega ; \mathbf{R}^{(m)}\right) \oplus x_{0} M\left(\Omega ; \mathbf{R}^{(m)}\right) \oplus \cdots \oplus x_{0}^{k-1} M\left(\Omega ; \mathbf{R}^{(m)}\right) \tag{4}
\end{equation*}
$$

In a recent paper ([9]) Ryan proved that if $\underline{D}^{k} f(\underline{x})=0$, then

$$
\begin{equation*}
f(\underline{x})=f_{0}(\underline{x})+\underline{x} f_{1}(\underline{x})+\cdots+\underline{x}^{k-1} f_{k-1}(\underline{x}) \tag{5}
\end{equation*}
$$

where $\underline{D} f_{j}(\underline{x})=0, j=0, \ldots, k-1$. This result is considered to be anal ogous to what we have in Theorem 3. On the other hand, direct computation shows that in the context \mathbf{R}_{1}^{m} for a non-zero monogenic function f, the function $D^{2}(x f)$ is no longer identical to zero in general. This shows that the statement madefrom the abovementioned R yan's result by replacing \underline{D} by D and \underline{x} by x is not true in \mathbf{R}_{1}^{m}.
F rom Lemma $3 x_{0}^{k-1} M\left(\Omega ; \mathbf{R}^{(m)}\right) \subset \operatorname{ker}\left(D^{k}\right)$. So Theorem 3 can also written as

$$
\begin{equation*}
\operatorname{ker}\left(D^{k}\right)=\operatorname{ker}\left(D^{k-1}\right) \oplus x_{0}^{k-1} M\left(\Omega ; \mathbf{R}^{(m)}\right) \tag{6}
\end{equation*}
$$

Note that for $f \in \operatorname{ker}\left(D^{k}\right)$ the reduction in the proof of Lemma 3 shows that $g=f-1 /(k-1)!x_{0}^{k-1} D^{k-1} f \in \operatorname{ker}\left(D^{k-1}\right)$. Hence f has an alternative decomposition $f(x)=g(x)+1 /(k-1)!x_{0}^{k-1} D^{k-1} f$, where $g(x)$ is a $(k-1)$-monogenic function.

4 THE SOLUTIONS OF $p(D) f=0$

For a polynomial $p(\lambda)=\lambda^{n}+b_{1} \lambda^{n-1}+\cdots+b_{n}, b_{j} \in \mathbf{C}, j=1, \ldots, n$, one can associate it with a polynomial Dirac operators $p(D)=D^{n}+b_{1} D^{n-1}+\cdots+b_{n}$. Polynomial $p(\lambda)$ is called the characteristic polynomial of $p(D)$. In $[7,8]$ fundamental solutions of $p(\underline{D})$ in \mathbf{R}^{m} and function theory of solutions of $p(\underline{D})$ are studied.

Denote $\operatorname{ker}(p(D))=\left\{f \mid p(D) f=0, f \in C^{n}\left(\Omega ; \mathbf{C}^{(m)}\right)\right\}$. The set $\operatorname{ker}(p(D))$ is a right Hilbert $\mathbf{C}^{(m)}$-module. Since $p(\lambda)$ has the decomposition

$$
\begin{equation*}
p(\lambda)=\left(\lambda-\lambda_{1}\right) \cdots\left(\lambda-\lambda_{n}\right), \tag{7}
\end{equation*}
$$

where $\lambda_{i} \in \mathbf{C}, i=1, \ldots, n$, are the solutions of $p(\lambda)=0$, the associated polynomial Dirac operator $p(D)$ has the decomposition

$$
\begin{equation*}
p(D)=\left(D-\lambda_{1}\right) \cdots\left(D-\lambda_{n}\right) . \tag{8}
\end{equation*}
$$

Every operator $D-\lambda_{i}$ in (8) commutes with the others.
Lemma 4 Let $\pi(\lambda)={ }_{k=1}^{l}\left(\lambda-\lambda_{k}\right)^{n_{k}}$ be a polynomial of $\lambda, n_{k} \in N$, then

$$
\begin{equation*}
\frac{1}{\pi(\lambda)}={ }_{k=1 j=1}^{n_{k}} \frac{1}{\left(n_{k}-j\right)!} \frac{d^{n_{k}-j}}{d \lambda^{n_{k}-j}} \frac{\left(\lambda-\lambda_{k}\right)^{n_{k}}}{\pi(\lambda)}{ }_{\lambda=\lambda_{k}} \frac{1}{\left(\lambda-\lambda_{k}\right)^{j}} \tag{9}
\end{equation*}
$$

Proof The rational function $1 / \pi(\lambda)$ has a decomposition into partial fractions:

$$
\frac{1}{\pi(\lambda)}={ }_{k=1}^{l=1} n_{k} \frac{a_{k, j}}{\left(\lambda-\lambda_{k}\right)^{j}}
$$

We have, for $1 \leq s \leq l$,

$$
\frac{\left(\lambda-\lambda_{s}\right)^{n_{s}}}{\pi(\lambda)}={ }_{k=1, k \neq s}^{l} \sum_{j=1}^{n_{k}} \frac{a_{k, j}\left(\lambda-\lambda_{s}\right)^{n_{s}}}{\left(\lambda-\lambda_{k}\right)^{j}}+{ }_{j=1}^{n_{s}} a_{s, j}\left(\lambda-\lambda_{s}\right)^{n_{s}-j} .
$$

Clearly,

$$
\frac{d^{n_{s}-j}}{d \lambda^{n_{s}-j}} \frac{\left(\lambda-\lambda_{s}\right)^{n_{s}}}{\pi(\lambda)}=\left(n_{s}-j\right)!a_{s, j}, \quad j=1, \ldots, n_{s} .
$$

In below we first study the case that all λ_{j} in the decomposition (8) are different. In this case the coefficients in (9) can be easily worked out.

Theorem 4 If λ_{j} in (8), $j=1, \ldots, n$, are all different, then

$$
\begin{equation*}
\operatorname{ker}(p(D))=\operatorname{ker}\left(D-\lambda_{1}\right) \oplus \cdots \oplus \operatorname{ker}\left(D-\lambda_{n}\right) . \tag{10}
\end{equation*}
$$

Proof In the assumed case we have $l=n$ and $l_{k}=1 \mathrm{in}$ Lemma 4. Through simple computation (or refer to Lagrange's formula of interpolation) we have the identical relation

$$
1={ }_{k=1}^{n \neq k} n_{k}^{n} \frac{\lambda-\lambda_{j}}{\lambda_{k}-\lambda_{j}}
$$

which implies the identical relation for the Dirac operator D, viz.

$$
I={ }_{k=1}^{n}{ }_{j \neq k}^{n} \frac{D-\lambda_{j}}{\lambda_{k}-\lambda_{j}},
$$

where I is the identity operator. So, for any $f \in C^{n-1}\left(\Omega ; \mathbf{C}^{m}\right)$,

$$
\begin{equation*}
f=\sum_{k=1}^{n} \quad \frac{D-\lambda_{j}}{j \neq k} \frac{\lambda_{k}}{\lambda_{k}-\lambda_{j}} . \tag{11}
\end{equation*}
$$

Since $f \in \operatorname{ker}(p(D))$, we have

$$
{ }_{j \neq k}^{n} \frac{D-\lambda_{j}}{\lambda_{k}}
$$

Corollary 4 If $f \in \operatorname{ke}\left((D-\lambda)^{n}\right)$, then f has the Taylor expansions at the origin O

$$
f(x)=e^{\lambda x_{0}} \quad \infty \inf (n-1, k) \quad \frac{x_{0}^{j}}{k=0} \quad{ }_{j=0} \quad\left(l_{1}, \ldots, l_{k-j}\right),\left.~ j!~ V_{l_{1}, \ldots, l_{k-j}}(x) \frac{\partial^{k-j} D^{j}\left(e^{-\lambda x_{0}} f\right)}{\partial x_{l_{1}} \cdots \partial x_{l_{k-j}}}\right|_{x=0} .
$$

Proof Theorem 5 asserts that $f \in \operatorname{ker}\left((D-\lambda)^{n}\right)$ implies $e^{-\lambda x_{0}} f \in \operatorname{ker}\left(D^{n}\right)$. The assertion then follows from Theorem 2.

Now we study the general case. Let $\lambda_{1}, \ldots, \lambda_{l}$ be all the different roots in (8) with corresponding multiples $n_{1}, \ldots, n_{l}, n_{1}+\cdots+n_{l}=n, \quad n_{j} \in N, j=1, \ldots, l$. The polynomial Dirac operator $p(D)$ in (8) can be written as

$$
\begin{equation*}
p(D)=\left(D-\lambda_{1}\right)^{n_{1}} \cdots\left(D-\lambda_{l}\right)^{n_{l}} . \tag{14}
\end{equation*}
$$

Theorem 6 If $p(D)$ in Eq. (8) has the decomposition Eq. (14), then

$$
\begin{equation*}
\operatorname{ker}(p(D))=\operatorname{ker}\left(D-\lambda_{1}\right)^{n_{1}} \oplus \cdots \oplus \operatorname{ker}\left(D-\lambda_{l}\right)^{n_{l}} \tag{15}
\end{equation*}
$$

Proof First we note that for any j, the operator $\left(D-\lambda_{j}\right)^{n_{j}}$ commutes with the other $\left(D-\lambda_{i}\right)^{n_{i}}, i \neq j$. This implies that functions in $\operatorname{ker}\left(\left(D-\lambda_{j}\right)^{n_{j}}\right)$ belong to $\operatorname{ker}(p(D))$.

On the other hand, let $\pi(\lambda)={ }_{k=1}^{l}\left(\lambda-\lambda_{k}\right)^{n_{k}}$ be the characteristic polynomial of $p(D)$. Then by the identical relation (9) in Lemma 4,

$$
1=
$$

Remark 3 The proof of Theorems 4 and 6 gives rise to explicit decomposition formulas for functions in $\operatorname{ker}(p(D))$. The decomposition in the proof of Theorem 6 is, in fact, finer than what is stated in Theorem 6. Based on Lagrange's formula of interpolation we have a recursive method to work out all the coefficients in decomposition formulas. As example, if $f \in \operatorname{ker}\left(\left(D-\lambda_{1}\right)^{2}\left(D-\lambda_{2}\right)^{2}\right)$, then replace the identical relation $f=\left(\left(D-\lambda_{1}\right) /\left(\lambda_{2}-\lambda_{1}\right)\right) f+\left(\left(D-\lambda_{2}\right) /\left(\lambda_{1}-\lambda_{2}\right)\right) f$ into itself, we have

$$
\begin{aligned}
f & =\frac{D-\lambda_{1}}{\lambda_{2}-\lambda_{1}}\left(\frac{D-\lambda_{1}}{\lambda_{2}-\lambda_{1}} f+\frac{D-\lambda_{2}}{\lambda_{1}-\lambda_{2}} f+\frac{D-\lambda_{2}}{\lambda_{1}-\lambda_{2}}\left(\frac{D-\lambda_{1}}{\lambda_{2}-\lambda_{1}} f+\frac{D-\lambda_{2}}{\lambda_{1}-\lambda_{2}} f\right.\right. \\
& =\frac{\left(D-\lambda_{1}\right)^{2}}{\left(\lambda_{2}-\lambda_{1}\right)^{2}} f+2 \frac{\left(D-\lambda_{1}\right)\left(D-\lambda_{2}\right)}{\left(\lambda_{2}-\lambda_{1}\right)\left(\lambda_{1}-\lambda_{2}\right)} f+\frac{\left(D-\lambda_{2}\right)^{2}}{\left(\lambda_{1}-\lambda_{2}\right)^{2}} f \\
& =\frac{\left(D-\lambda_{1}\right)^{2}}{\left(\lambda_{2}-\lambda_{1}\right)^{2}} f+2 \frac{\left(D-\lambda_{1}\right)\left(D-\lambda_{2}\right)}{\left(\lambda_{2}-\lambda_{1}\right)\left(\lambda_{1}-\lambda_{2}\right)}\left(\frac{D-\lambda_{1}}{\lambda_{2}-\lambda_{1}} f+\frac{D-\lambda_{2}}{\lambda_{1}-\lambda_{2}} f+\frac{\left(D-\lambda_{2}\right)^{2}}{\left(\lambda_{1}-\lambda_{2}\right)^{2}} f\right. \\
& =\frac{\left(D-\lambda_{1}\right)^{2}}{\left(\lambda_{2}-\lambda_{1}\right)^{2}} f+2 \frac{\left(D-\lambda_{1}\right)^{2}\left(D-\lambda_{2}\right)}{\left(\lambda_{2}-\lambda_{1}\right)^{2}\left(\lambda_{1}-\lambda_{2}\right)} f+2 \frac{\left(D-\lambda_{1}\right)\left(D-\lambda_{2}\right)^{2}}{\left(\lambda_{2}-\lambda_{1}\right)\left(\lambda_{1}-\lambda_{2}\right)^{2}} f+\frac{\left(D-\lambda_{2}\right)^{2}}{\left(\lambda_{1}-\lambda_{2}\right)^{2}} f .
\end{aligned}
$$

Notethat in the recursion procedure, an allowed recursion step is one after that there is no power of $\left(D-\lambda_{j}\right)$ exceeding the maximal power $\left(D-\lambda_{j}\right)^{n_{j}}$, and the recursion steps end when in each term of the summation there is only one j for which the corresponding operator $\left(D-\lambda_{j}\right)$ is with a less power than $\left(D-\lambda_{j}\right)^{n_{j}}$ but all the others have the maximal powers. This recursion method is clearly applicable to general polynomial operators $p(D)=\left(D-\lambda_{1}\right)^{n_{1}} \cdots\left(D-\lambda_{l}\right)^{n_{l}}$.
Corollary 5 Let $p(D)=\left(D-\lambda_{1}\right)^{n_{1}} \cdots\left(D-\lambda_{l}\right)^{n_{l}}, \quad n_{1}+\cdots+n_{l}=n, \quad n_{j} \in N, j=$ $1, \ldots, l$, then

$$
\begin{aligned}
\operatorname{ker}(p(D))= & e^{\lambda_{1} x_{0}} M\left(\Omega ; \mathbf{R}^{(m)}\right) \oplus e^{\lambda_{1} x_{0}} x_{0} M\left(\Omega ; \mathbf{R}^{(m)}\right) \oplus \cdots \oplus e^{\lambda_{1} x_{0}} x_{0}^{n_{1}-1} M\left(\Omega ; \mathbf{R}^{(m)}\right) \\
& \oplus e^{\lambda_{2} x_{0}} M\left(\Omega ; \mathbf{R}^{(m)}\right) \oplus e^{\lambda_{2} x_{0}} x_{0} M\left(\Omega ; \mathbf{R}^{(m)}\right) \oplus \cdots \oplus e^{\lambda_{1} x_{0}} x_{0}^{n_{2}-1} M\left(\Omega ; \mathbf{R}^{(m)}\right) \\
& \oplus \cdots \cdots \\
& \times e^{\lambda_{l} x_{0}} M\left(\Omega ; \mathbf{R}^{(m)}\right) \oplus e^{\lambda_{l} x_{0}} x_{0} M\left(\Omega ; \mathbf{R}^{(m)}\right) \oplus \cdots \oplus e^{\lambda_{l} x_{0}} x_{0}^{n_{1}-1} M\left(\Omega ; \mathbf{R}^{(m)}\right) .
\end{aligned}
$$

Proof It is concluded from Theorems 3, 5 and 6.
As a direct application of Theorem 6, the Taylor expansion of $f \in \operatorname{ker}(p(D))$ can also be derived from Corollary 4 and (18).

Remark 4 It is seen from Corollary 5 that the solutions of $p(D) f=0$ are closely related to monogenic functions and the linear independent solutions $x_{0}^{k} e^{\lambda_{j} x_{0}}, j=$ $1, \ldots, l, k=0, \ldots, n_{j}-1$, of the ordinary differential equation $p\left(d / d x_{0}\right) g\left(x_{0}\right)=$ $\left(\left(d^{n} / d x_{0}^{n}\right)+\sum_{j=0}^{n-1} b_{j}\left(d^{j} / d x_{0}^{j}\right)\right) g\left(x_{0}\right)=0$, where $p\left(d / d x_{0}\right)={ }_{k=1}\left(\left(d / d x_{0}\right)-\lambda_{k}\right)^{n_{k}}$.
Remark 5 Theorems 4 and 6 still hold for polynomial Dirac operators $p(\underline{D})$ in \mathbf{R}^{m}, while Corollaries 2-5 and Theorem 5, do not remain in the same form for $\operatorname{ker}(p(\underline{D}))$.

5 APPLICATION TO THE SOLUTIONS OF $p(D) f=g$

Structures of solutions of polynomial Dirac equations $p(D) f=0$ have been studied in the previous sections. In this section, solutions of inhomogeneous equations

$$
\begin{equation*}
p(D) f=g \tag{20}
\end{equation*}
$$

will be discussed. The following two theorems can be easily proved.
Theorem 7 If in the equation $p(D) f=g$ the function g can be decomposed into $g=$ $g_{1}+g_{2}$, and $f_{j}(x)$ is a solution of $p(D) f=g_{j}, j=1,2$, then $f_{1}+f_{2}$ is a solution of $p(D) f=g$.
Theorem 8 Let $f_{1}(x)$ be a solution of $p(D) f=g$. Then all solutions of $p(D) f=g$ have the form $f(x)=f_{1}(x)+h(x)$, where $h \in \operatorname{ker}(p(D))$.

According to Theorems 7 and 8, to solve an equation (20) is reduced to find a particular solution of the equation. There is no general approach for an arbitrary $\mathbf{R}^{(m)}$-valued continuous function g. We claim that for functions g of the form $g(x)=$ $H\left(x_{0}\right) G(x)$, where H is a function in a real variable and $G \in M\left(\Omega ; \mathbf{R}^{(m)}\right)$, and therefore any linear combination of such functions, we are able to deduce a particular solution.

Suggested by the theory of linear ordinary differential equations we assume that a particular solution of the Eq. (20) in the case $g(x)=H\left(x_{0}\right) G(x), G \in M\left(\Omega ; \mathbf{R}^{(m)}\right)$, is of the form $f(x)=F\left(x_{0}\right) G(x)$, where F is a function in a real variable. Then, based on the Lemma 1,

$$
\begin{equation*}
D^{j}\left(F\left(x_{0}\right) G(x)\right)=\frac{d^{j} F}{d x_{0}^{j}} G(x), \quad j=1, \ldots, n \tag{21}
\end{equation*}
$$

Inserting (21) into (20), we are reduced to

$$
\begin{equation*}
p\left(\frac{d}{d x_{0}} F\left(x_{0}\right)=H\left(x_{0}\right) .\right. \tag{22}
\end{equation*}
$$

Thus a particular solution f

References

[1] F. Brackx, R. Delanghe and F. Sommen (1982). Clifford analysis. Research Notes in Mathematics, 76, Pitman, London.
[2] Xu Zhenyuan (1991). A function theory for the operator $D-\lambda$. Complex Variables, 16, 37-42.
[3] V.V. K isil (1995). Connection between different function Theories in Clifford analysis. Advances in Applied Clifford Algebras, 5(1), 63-74.
[4] J. R yan (1996). Intrinsic Dirac operators in C^{n}. Advances in Mathematics, 118, 99-133.
[5] R. Delanghe and F. Brackx (1978). Hypercomplex function theory and Hilbert modules with reproducing kernel. Proc. London Math. Soc., 37, 545-578.
[6] J ohn Ryan (1990). Iterated Dirac operators in C^{n}. Zeitschrift für Analysis und ihre Anwendungen, 9, 385-401.
[7] F. Sommen and Xu Zhenyuan (1992). F undamental solutions for operators which are polynomials in the Dirac operator. In: A. M icali, R. Boudet and J. Helmstetter (Eds.), Clifford Algebra and Their Applications in Mathematical Physics, pp. 313-326. Dordrecht, K luwer.
[8] J ohn Ryan (1995). Cauchy-Gren type formulae in Clifford analysis. Trans. Amer. Math. Soc., 347(4), 1331-1341.
[9] J ohn Ryan. Introductory Clifford Analysis. Preprint (personal communication).

