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GENERALIZATIONS OF FUETER’S THEOREM ∗

K.I. KOU† , T. QIAN† , AND F. SOMMEN‡

Abstract. In relation to the solution of the Vekua system for axial type monogenic functions,
generalizations of Fueter’s Theorem are discussed. We show that if f is a holomorphic function in one
complex variable, then for any underlying space Rn

1 the induced function Δk+(n−1)/2f(x0+x)Pk(x),
where Pk(x) is left-monogenic and homogeneous of degree k, is left-monogenic whenever k+(n−1)/2
is a non-negative integer. If the space dimension n + 1 is odd, then the above also holds for k being
non-negative integers.

1. Introduction. If f(z) is a holomorphic function in an open set of the upper
half complex plane and

f(z) = u(s, t) + iv(s, t), z = s + it,

then, Fueter’s theorem (see [F]) asserts that in the corresponding region there holds

DΔ
(

u(q0, |q|) +
q

|q|v(q0, |q|)
)

= 0,

where q = q1i+ q2j+ q3k,D = ∂0 +∂, ∂ = ∂1i+∂2j+∂3k,Δ = ∂2
0 +∂2

1 +∂2
2 +∂2

3 , ∂i =
∂

∂qi
, i = 0, 1, 2, 3. The quaternionic space may be identified with Rn

1 for n = 3, where

Rn
1 = {x = x0 + x : x0 ∈ R, x ∈ Rn}

and

Rn = {x = x1e1 + · · ·xnen : xi ∈ R, i = 1, · · · , n},
and e2

i = −1, eiej = −ejei, i, j = 1, 2, · · · , n, i < j ([BDS]). The quaternionic algebra
corresponds to the non-universal Clifford algebra over R in the above setting with
n = 2 and e3 = e1e2. Fueter’s machinery is used to develop singular integral and
Fourier multiplier theory on the unit sphere of the quaternionic space in [Q1].

In 1957, Sce extended this result to Rn
1 for n being odd positive integers ([Sc]).

He proved that under the same assumptions on f , there holds

DΔ(n−1)/2

(
u(x0, |x|) +

x

|x|v(x0, |x|)
)

= 0,

where D = ∂0+∂, ∂ = ∂1e1+· · ·+∂nen,Δ = ∂2
0+∂2

1+· · ·+∂2
n, ∂i = ∂

∂xi
, i = 0, 1, · · · , n.

Using Fourier transformation Qian extended Sce’s result to Rn
1 for n being even
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274 K.I. KOU, T. QIAN AND F. SOMMEN

positive integers ([Q2]). The theme was further developed and found to play a crucial
role in the study of Fourier multipliers and singular integrals on the unit sphere of Rn

1

and its Lipschitz perturbations ([Q3]). As example, the study shows that by means of
this technique, some topics on the sphere may be reduced to the corresponding ones
on the unit circle in the complex plane.

In a recent paper Sommen proved the following result: If n+1 is an even positive
integer, then

DΔk+(n−1)/2

((
u(x0, x) +

x

|x|v(x0, |x|)
)

Pk(x)
)

= 0,

where Pk is any polynomial in x of homogeneity k, left-monogenic with respect to the
Dirac operator ∂, viz. ∂Pk(x) = 0 ([So]). When k = 0, this reduces to Sce’s result.

Below we will briefly write

f(x0 + x) = u(x0, x) +
x

|x|v(x0, |x|).

The present paper extends Sommen’s result, as given in the following

Theorem 1. Let f be a holomorphic function in a relatively open set B in the
upper half complex plane. Let Pk(x) be left-monogenic, homogeneous of degree k. Then
in the set

−→
B = {x = x0 + x ∈ Rn

1 : (x0, |x|) ∈ B} the function

Δk+(n−1)/2[f(x0 + x)Pk(x)]

is left-monogenic whenever k + (n − 1)/2 is a non-negative integers. If the space
dimension n + 1 is odd, then the monogenicity of the above expression also holds for
k being non-negative integer and Pk(x) a homogeneous left-monogenic polynomial of
degree k.

Note that in Theorem 1 when n + 1 is odd and k + (n − 1)/2 is a non-negative
integer, then k has to be a “half integer” among −(n − 1)/2, ...,−1/2, 1/2, 3/2, ... In
this case the definition of Pk(x) is given in §2 below. These cases were studied in
detail in the Ph.D. thesis [VL1] and papers [VL2] and [SVL]. Also based on these
studies, for k being non-negative integers, Pk(x) can be non-polynomial. The second
conclusion of Theorem 1, however, does require Pk(x) to be polynomial.

In the text the single letter C will denote constants depending on n and k that
may be different from time to time. We will use the notation γj,α, βk, etc. to denote
the constants that are explicitly defined and of the same values throughout the paper.
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the authors’ understanding to some related knowledge on generalized functions. We
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and encouragement to undertake this work. The second author would like to express
his sincere thanks to Richard Delanghe for his support in obtaining a scholarship from
Office of Research Policy, Ghent University, Project 01VB6698. The work is partly
supported by the 2001 Research Grant No. RG024/00-01S/QT/FST of the University
of Macau.



GENERALIZATIONS OF FUETER’S THEOREM 275

2. The Equations For General Axial Monogenic Functions. The classical
Fueter’s Theorem and its generalizations obtained in [Sc] and [Q2] provides us with
monogenic functions of the axial type

A(x0, r) + ωB(x0, r) = Δ(n−1)/2f(x0 + x),

whereby x = rω, r = |x| and A and B are scalar valued functions. This means that

D(A(x0, r) + ωB(x0, r)) = 0,

where D = ∂0 + ∂. In polar coordinates,

∂ = ω(∂r +
1
r
Γω),

where

Γω = −x ∧ ∂x = −
∑

ejek(xj∂k − xk∂j),

being the spherical vector derivative (or spin-orbit coupling).

We obtain from Γω(ω) = (n − 1)ω the Vekua-type system

∂0A − ∂rB = ((n − 1)/r)B
∂0B + ∂rA = 0.

More generally, one may consider monogenic functions of the axial type

(A(x0, r) + ωB(x0, r))Pk(ω),

whereby

Pk(rx) = rkPk(ω)

is left-monogenic in Rn, i.e. ∂Pk(x) = 0, and homogeneous of degree k ∈ Z+,Z+ =
{
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imply that

ΓωPk(ω) = −kPk(ω), Γω(ωPk(ω)) = (k + n − 1)ωPk(ω).

Based on these, the monogenicity of (A + ωB)Pk(ω) then requires the functions A
and B to satisfy the Vekua system

∂0A − ∂rB = ((k + n − 1)/r)B
∂0B + ∂rA = (k/r)A.

The generalized Fueter’s Theorem obtained in [So] provides special solutions to
this system of the form

Δk+(n−1)/2(f(x0 + x)Pk(x)),

for the case n being odd. The first question is to generalize this to the case n be-
ing even. But there is yet another interesting generalization having to do with the
consideration of spherical monogenics Pα of general complex degree of homogeneity
α ∈ C.

Definition. Let U be an open domain in Rn of the form U = R+ × O,O being
an open subset of Sn−1, i.e. U = {x = rω : r > 0, ω ∈ O}. Then a function Pα is
called spherical monogenic of degree α in U if Pα(x) = rαPk(ω) and ∂Pα(x) = 0 in
U. The restriction Pα(ω) of Pα(x) to Sn−1 is called spherical monogenic of complex
degree α in O.

The theory of spherical monogenics of complex degree is fully elaborated in the
Ph.D. thesis [VL1] and basic information is also contained in [VL2] and [SVL]. In this
paper we are using the following basic facts about spherical monogenics of complex
degrees.

(i) If a spherical monogenic Pα is a homogeneous polynomial, then certainly
α = k ∈ Z+. But the converse is NOT true. In fact, there exist spherical monogenics
Pk(x) with k ∈ Z+ that are not polynomials. In that case Pk(ω) is not globally
defined over Sn−1, i.e. there are singularities.

(ii) Whenever Pα is spherical monogenic of degree α, Pβ(x) = x
|x|n Pα( x

|x|2 ) is
spherical monogenic of the degree β = −α − n + 1.

(iii) In particular, spherical monogenics of degree −(k + n − 1), k ∈ Z+, are the
inverse of spherical monogenics of degree k ∈ Z+. In case they are the inverse of
homogeneous polynomials they are defined everywhere outside the origin, as well as
in all points ω ∈ Sn−1, i.e. U = {R+ × Sn−1}.

(iv) There are no other spherical monogenics Pα which are defined all over Sn−1.
Spherical monogenics of degree α not included in the discrete set {0, 1, 2, ...} ∪ {−n +
1,−n,−n − 1, ...} can only be defined in proper subsets of Sn−1, i.e. they must have
singularities. Even for α = k ∈ Z+ and for α = −(k + n − 1), k ∈ Z+ there can be
singularities.
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Example. (The homogeneous Radon kernel)

Let t, s ∈ Sn−1, and < t, s >= 0, i.e. T = t + is is a nullvector. Let zα be the
generalized power of z ∈ C defined for z ∈ C \ L, L being a line issuing from the
origin. Then

Rα(x, T ) =< x, T >α T ,

as a function of x, is spherical monogenic of degree α in a suitable conic region in Rn.

Moreover, in case T1, T2 are anti-commuting nullvectors, then the product of the
two corresponding Radon kernels

< x, T1 >α< x, T2 >β T1T2

is monogenic whenever it is defined. In the case α + β = 0 we obtain monogenic
functions which are homogeneous of degree 0.

Hence there are plenty of examples and there is no reason why one couldn’t
consider functions of the more general axial type

(A(x0, r) + ωB(x0, r))Pα(x)

defined for ω ∈ O (open subset of Sn−1) and (x0, r) belongs to an open subset of
R×R+. In this case the equations of monogenicity reduce to the Vekua-type system
with complex parameter:

∂0A − ∂rB = ((α + n − 1)/r)B
∂0B + ∂rA = (α/r)A.
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In case n is odd, we correspondingly consider the values α = −(n −
1)/2, ...,−1, 0, 1, 2, 3, ... which are integers including the cases α = k ∈ Z+ considered
in [Sc] and [So] where Pk(ω) are globally defined. This restriction may be released.

In case n is even, we correspondingly deal with α = −(n − 1)/2, ... −
1/2, 1/2, 3/2, ...which are half integers. In this case Pα is never globally defined but
for Sce’s method that gives no problem.

Case 2. α + (n − 1)/2 is a non-negative non-integer (see §4).

In this case one has to consider general powers of the Laplace operator defined in
terms of integral operators (Fourier multipliers) as in [Q2]. Those operators are non-
local pseudodifferential operators and the methods make use the fact that Pα(ω) is
spherical harmonic. It is natural to restrict ourselves to those cases for which Pα(ω)
have no singularities on Sn−1. Due to the fact that Δα+(n−1)/2 is non-local, any
singularity of Pα(ω) would indeed have an effect everywhere. So there are only the
cases α = k ∈ Z+ or α = −(k + n − 1), k ∈ Z+. We assume that Pk(ω) is globally
defined. The space dimension n + 1 in the case has to be odd as dealt with in §4.

In all other cases the Vekua system with complex powers may still be considered,
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and

∂(ωg(x0, r)Pα(x)) = ∂(g(x0, r)r2α+n−1[
x

|x|n Pα(
x

r2
)])

= −(∂rg + ((2α + n − 1)/r)g)Pα(x).

So, as in [So], with s = α + (n − 1)/2,

Δ(g(x0, r)Pα(x)) = (∂2
0 + ∂2

r +
2s

r
∂r)[g(x0, r)]Pα(x).

From this, one obtains consequently,

h1(x0, r)Pα(x) = Δ(h(x0, r)Pα(x)) = (2s)(1/r∂r)(h)Pα(x),
h2(x0, r)Pα(x) = 2s(2s − 2)(1/r∂r)2(h)Pα(x),

etc. (also see [QS]), and, clearly, after s + 1 steps we get zero.

Hence the Fueter principle is valid in all cases whereby s = α + (n − 1)/2 ∈ Z+.

Example. For s = α + (n− 1)/2 = 0 we obtain monogenic functions of the form
F (x) = f(x0 +x)Pα(x), f being holomorphic and α = −(n− 1)/2. Of special interest
for applications are homogeneous monogenic of the form

F (x) = (x0 + x)lPα(x), l being complex,

and in particular the functions

F (x) =
(x0 + x)l

< x, T >(n−1)/2
T

which for the special values l = k + (n − 1)/2, k ∈ Z+, provide more examples of
spherical monogenics of degree k ∈ Z+ which are not polynomial, i.e. which have
singularities after being restricted to the unit sphere.

Important Remark. The notation may be somewhat misleading because it
refers to replacing the complex variable x0+ir by x0+ωr. For example, if g(x0+ir) =
if(x0 + ir) then one would mistakenly have g(x0 + x) = if(x0 + x) rather than
g(x0 + x) = xf(x0 + x) as it should be from the definition of g(x0 + x) in §1, where
one should write g(x0 + ir) = u+ iv, u, v being functions of x0 and r and then replace
i by ω. In this way Δα+(n−1)/2ωf(x0 + x)Pα(x) is also monogenic whenever f is
holomorphic. Another way to look this is that the function ωf(x0 + x) can also be
written in the form (∂0 + ω∂r)h(x0, r), where h(x0, r) being scalar (real or complex)
harmonic, and that is what matters in the proof of Fueter’s Theorem in the case.

In other words, one can even multiply f(x0 + x) with both the zero-divisors
(1/2)(1 + iω) and (1/2)(1 − iω) to obtain other suitable input for Fueter’s Theorem
and the result of these multiplications is given by

(1/2)(1 + iω)f(x0 − ir), (1/2)(1 − iω)f(x0 + ir),

f(z) being holomorphic (also see [LMcQ]).
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As important examples of this we mention the functions

(1/2)(1 ± iω)
(x0 − a) + i(b ∓ r)

leading to the construction of “axial Cauchy kernels” of which the singularities include
the codim 2 sphere x0 = a, r = b. They are algebraic functions. Yet, from these
functions one may construct

(1/2)(1 − iω)(x0 − a + ib − ir) + (1/2)(1 + iω)(x0 − a + ib + ir)
(x0 − a + ib)2 + r2

=
x0 − a + ib − x

(x0 − a + ib)2 + r2

which is a rational function and becomes singular for x0 = a and r = b. After
application of the classical Fueter-Sce Theorem as well as its extended version from
[So] it stays rational and the order of the singularities on the codim 2 sphere is given
by 2k + n. Also, in the case where n is odd and a = −(n − 1)/2, the plane wave
function < x, T >(1−n)/2 T is rational and the product

(x0 − a + ib − x)T
((x0 − a + ib)2 + r2) < x, T >(n−1)/2

is rational, monogenic and has first order zeros on the sphere x0 = a, r = b as well
as higher order zeros on the plane < x, T >= 0. It is a combination of a Cauchy-
kernel and a Radon kernel which plays an important role in the transform analysis of
monogenic functionals.

4. The Case n+1 Odd By Using Fourier Integral Operator. The method
was first used in [Q2] to extend Fueter’s and Sce’s Theorems to the spaces Rn

1 where
n + 1 is odd. We shall further develop this method in combining with certain inter-
twining relations between differential operators.

Note that Δk+(n−1)/2 is defined through a certain Fourier multiplier (see [Q2]).
In general, we will adopt the following definition: for s ≥ 0,

Δsg(x) = F−1((2πi| · |)2sFg(·)),
where

Fg(ξ) =
∫
Rn

1

e2πi<x,ξ>g(x)dx

is the Fourier transform of g, also denoted by ĝ, and

F−1h(x) =
∫
Rn

1

e−2πi<x,ξ>h(ξ)dξ

is the inverse Fourier transform of h.

If k is a non-negative integer, then the Fourier multiplier definition of Δk+(n−1)/2

coincides with the pointwise differentiation operator when n+1 is even ([Q2]). In the
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case n+1 is odd, our proof shows that the tempered distribution defined through the
Fourier multiplier is actually identical to a function.

In this section unless stating exceptionally we always assume that n + 1 is odd
and k is a non-negative integer. We first show that for any l ∈ Z, where Z is the set
of integers, the function

Δk+(n−1)/2
(
(x0 + x)lPk(x)

)
is left-monogenic.

We shall first deal with the negative power cases. Owing to the relation ([Q2],
[Q3])

(x0 + x)−l =
(

x

|x|2
)l

=
(−1)l−1

(l − 1)!

(
∂

∂x0

)l−1(
x

|x|2
)

, l = 1, 2, · · · ,

we are reduced to show that

Δk+(n−1)/2

(
x

|x|2 Pk(x)
)

is left-monogenic.

Lemma 1. Qk+1(x) = xPk(x) is harmonic and homogeneous of degree k + 1.

Proof. We observe that

(
∂

∂x0

)2

Qk+1(x) = 0.

Using Leibniz’s formula for second derivative, we obtain

(
∂

∂xi

)2

Qk+1(x) = 2
(

∂

∂xi

)
(x)
(

∂

∂xi

)
Pk(x) + x

(
∂

∂xi

)2

Pk(x).

Adding together, we arrive

ΔQk+1(x) = −2∂Pk(x) + xΔPk(x) = 0.

The related proofs in [Q2] and [Q3] use the following Bochner type relation (for
the restricted case j = α = 1): In the tempered distribution sense (see [St]),

(
Qj(·)

| · |j+(n+1)−α

)∧
(ξ) = γj,α

Qj(·)(ξ)
|ξ|j+α

, j ∈ Z+, 0 < α < n + 1, (1)

where Qj is a harmonic, homogeneous polynomial of degree j, and

γj,α = ijπ(n+1)/2−α Γ(j/2 + α/2)
Γ(j/2 + (n + 1)/2 − α/2)

.
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The relation (1) is equivalent to∫
Rn

1

Qj(x)
|x|j+(n+1)−α

φ̂(x)dx = ijπ(n+1)/2−α Γ(j/2 + α/2)
Γ(j/2 + (n + 1)/2 − α/2)

∫
Rn

1

Qj(x)
|x|j+α

φ(x)dx,

j ∈ Z+, 0 < α < n + 1,

where φ is any function in the Schwartz class in Rn
1 .

For the case α = 0, the left-hand-side integral of (1) is replaced by the principal
value integral (see [St]). For j = 0, the relation holds for α − (n + 1) /∈ 2Z+ and
also −α /∈ 2Z+ (See, for instance, [GS]). Now we need to extend (1) to the cases
Re(α) > −j, j ∈ Z+.

We write the result in a symmetric way, and we have the extension of the above
relation:

Lemma 2. For −j < β, α < (n + 1) + j, α + β = n + 1, j ∈ Z+, we have

πβ/2Γ(
j + β

2
)
∫
Rn

1

Qj(x)
|x|j+β

φ̂(x)dx = ijπα/2Γ(
j + α

2
)
∫
Rn

1

Qj(x)
|x|j+α

φ(x)dx, (2)

where φ is any function in the Schwartz class in Rn
1 .

Proof. For 0 < α < n + 1 the both sides of (2) are holomorphic. For j ≥ 1
we can show that the relation can be extended to all complex numbers α satisfying
Re(α) > −j through holomorphic continuation. In fact, due to the orthogonality
property of spherical harmonics of different degrees, there follows

LHS = lim
ε→0+

∫
ε<|x|≤1

Qj(x)
|x|j+(n+1)−α

(
φ̂(x) − φ̂(0) − · · · − (

∑n
i=0 xi

∂
∂xi

)j−1φ̂(0)
(j − 1)!

)
dx

+
∫
|x|>1

Qj(x)
|x|j+(n+1)−α

φ̂(x)dx

that can be holomorphically extended to Re(α) > −j. The right-hand-side can also
be holomorphically extend to this region. The proof is complete.

In Lemma 2, let α = 2 − j, we have

lim
ε→0+

∫
|x|>ε

Qj(x)
|x|j+(n+1)+j−2

φ̂(x)dx = ijπ(n+1)/2+(j−2) 1
Γ((n + 1)/2 + j − 1)

∫
Rn

1

Qj(x)
|x|2 φ(x)dx.

Replacing φ by Δk+(n−1)/2φ and j by k + 1, we obtain

lim
ε→0+

∫
|x|>ε

Qk+1(x)
|x|(n+1)+2k

|x|2k+(n−1)φ̂(x)dx = βk

∫
Rn

1

Δk+(n−1)/2

(
Qk+1(x)

|x|2
)

φ(x)dx,

where

βk = 21−n−2ki2−n−kπ−k−(n−1)/2 1
Γ((n + 1)/2 + k)

.
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That is ∫
Rn

1

Qk+1(x)
|x|2 φ̂(x)dx = βk

∫
Rn

1

Δk+(n−1)/2

(
Qk+1(x)

|x|2
)

φ(x)dx.

Replacing Qk+1 by xPk(x), we have

LHS =
∫
Rn

1

( ·
| · |2 Pk(·)

)∧
(x)φ(x)dx = γ−1

1,n

∫
Rn

1

E ∗ (Pk(∂))δ)(x)φ(x)dx,

where E(x) = x
|x|n+1 = γ1,n

(
·

|·|2
)̂

(x) is the Cauchy kernel in Rn
1 and δ is the Dirac

function. So,

Δk+(n−1)/2

(
x

|x|2 Pk(x)
)

= γ−1
1,nβ−1

k E ∗ (Pk(∂)δ)(x) = γ1,1β
−1
k EPk(∂)(x).

This shows that the function

Δk+(n−1)/2

(
x

|x|2 Pk(x)
)

,

and, therefore, all the functions

Δk+(n−1)/2

((
x

|x|2
)l

Pk(x)

)
, l ∈ Z+ \ {0},

are left-monogenic. We in fact have the identity

Δk+(n−1)/2
(
(x0 + x)−lPk(x)

)
(3)

= γ1,1β
−1
k

(−1)l−1

(l − 1)!

(
∂

∂x0

)l−1

EPk(∂)(x), l ∈ Z+ \ {0}.

Now we turn to the non-negative power cases and we are to show that for l ∈ Z+,

Δk+(n−1)/2
(
(x0 + x)lPk(x)

)
is left-monogenic. We deal with these cases through an intertwining relation for the
operator DΔk+(n−1)/2.

Lemma 3. Let n be an even positive integer. Then, for s = k + (n − 1)/2, we
have

(DΔs)
(

x

|x|(n+1)−2s
g(x−1)

)
= αn,s

x

|x|(n+1)+2s+2
(DΔs)(g)(x−1), (4)

where αn,s is a constant depending on n and s, and g is any infinitely differentiable
function in Rn

1 \ {0}.

Temporarily accepting Lemma 3, we proceed with the main proof as follows.
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In Lemma 3, set g(x) = ( x
|x|2 )lPk(x), l ∈ Z+. Noticing that g(x−1) =

(−1)kxl|x|−2kPk(x), we obtain

(DΔk+(n−1)/2)((−1)kxl−1Pk(x)) = αn,s
x

|x|2n+2k+2
(DΔk+(n−1)/2)

(( ·
| · |2

)l

Pk(·)
)

(x−1).

In the early part of the proof we have shown that the right-hand-side vanishes, we
thus conclude

(DΔk+(n−1)/2)
(
(x0 + x)l−1Pk(x)

)
= 0, l ∈ Z+.

To prove Lemma 3 we need first to study fundamental solutions of the operator
DΔk+(n−1)/2. In [PQ] we provide a list of fundamental solutions of the iterated Dirac
operators ∂l, l ∈ Z+, in the context Rn. To summarize, a fundamental solution for ∂l

is, essentially (i.e. apart from a positive multiple constant depending on n and l),

x

|x|n−l+1
, if l is odd; and

1
|x|n−l

, if l is even;

except for the cases where n is even and l ≥ n for which a fundamental solution is

(c log |x| + d)
x

|x|n−l+1
, if l is odd ;

and

(c log |x| + d)
1

|x|n−l
, if l is even .

Now we are in the context Rn
1 with ∂ replaced by D. We are able to prove the

following results.

In below we denote 2s = 2k +(n− 1). So 2s may be even or odd. It is even if and
only if n + 1, the dimension of Rn

1 , is even.

The following result holds for both the cases n being even and odd.

Lemma 4. The operator D|D|2s in Rn
1 has a fundamental solution of the same

form as those in the above list for ∂2s+1 in Rn+1, except that the term x in the latter
is replaced by x.

Proof. We discuss two cases.

(i) 2s is even (The conclusion to this case will not be used in the following proof).

In that case the Fourier multiplier of a fundamental solution of D|D|2s is, apart
from a multiple constant depending only on n and k,

1
ξ

1
|ξ|2s

=
ξ

|ξ|2s+2
.
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A fundamental solution of the operator |D|2s+2 as a radial function is the same as the
one in the above list for ∂2s+2 in Rn+1. Denote it by K(x). Note that in the present
case the space dimension n + 1 is even, so the fundamental solution obtained from
the list is of the form

1
|x|n−2s−1

, 2s + 2 < n + 1; and (c log |x| + d)
1

|x|n−2s−1
, 2s + 2 ≥ n + 1.

Then DK is a fundamental solution for D|D|2s. The function DK is seen to be of
the desired form

x

|x|n−2s+1
, 2s + 2 < n + 1; and (c log |x| + d)

x

|x|n−2s+1
, 2s + 2 ≥ n + 1.

(ii) 2s is odd.

In that case

1
ξ

1
|ξ|2s

=
1
|ξ|

ξ

|ξ|2s+1
.

Now a fundamental solution of the operator D|D|2s−1, corresponding to the Fourier
multiplier

ξ

|ξ|2s+1
,

can be deduced through the list (the space dimension n
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where M and N represent the generalized functions induced by

1
|x|n and

x

|x|n−2s+2
,

respectively.

Denote τδf(x) = f(δx). Owing to the homogeneous properties of M and N , we
have

(M ∗ N(x), φ(
x

δ
)) = (M ∗ N(x), τδ−1φ(x))

= (N(x),M ∗ (τδ−1φ)(x))
= δ(N(x), τδ−1M ∗ φ(x))
= δ1+2s(N,M ∗ φ)
= δ1+2s(M ∗ N,φ).

Next let ρ denotes any rotation about the origin in Rn
1 . Let ρ be represented by

the matrix (ρij) and the role of ρ on x, denoted by ρ−1x, be given by the matrix
vector multiplication (ρij)(x), where (x) is understood as a column vector. Denote
also by ρ its induced action on functions, ρ(f)(x) = f(ρ−1x). Now, since M is a scalar
and N is a vector, the function M ∗N is vector-valued, homogeneous of degree 2s−n.
Denote the vector-valued function

K(x) = M ∗ N(x)

that is of homogeneity n − 2s. We have, owing to the rotational properties of M and
N ,

(ρK(x), φ(x) = (K(x), ρ−1φ(x))
= (N(x),M ∗ ρ−1φ(x))
= (N(x), ρ−1M ∗ φ(x))
= (ρN(x),M ∗ φ(x))
= (N(ρ−1x),M ∗ φ(x))
= ((ρij)(N(x)),M ∗ φ(x))

= (ρij)(N(x),M ∗ φ(x))

= (ρij)(K(x), φ(x))

= ((ρij)(K(x)), φ(x)).

We thus have

K(ρ−1x) = ρ(K(x)).

Invoking the Lemma of Section 1.2, Chapter 3, [St], to K(x)/|x|2s−n, we conclude
that

K(x)/|x|2s−n = C
x

|x| ,
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and thus

M ∗ N(x) = C
x

|x|n−2s+1
,

as desired.

Proof of Lemma 3. Since now n+1 is odd, we only concern the case (ii) in Lemma
4. Set L = DΔs = D|D|2s. Its fundamental solution is given by G(x) = C x

|x|n−2s+1 .

We have

L−1

(
(·)

|(·)|(n+1)+2s+2
(Lg)((·)−1)

)
(x−1)

=
∫
Rn

1

G(x−1 − y−1)
y−1

|y−1|(n+1)+2s+2

1
|y|2n+2

(Lg)(y)dy

= C
x−1

|x−1|n−2s+1

∫
Rn

1

−(x − y)
|x − y|n−2s+1

y−1

|y−1|n−2s+1

· y−1

|y−1|(n+1)+2s+2

1
|y|2n+2

(Lg)(y)dy

= C
x−1

|x−1|n−2s+1

∫
Rn

1

(x − y)
|x − y|n−2s+1

(Lg)(y)dy

= C
x−1

|x−1|n−2s+1
g(x).

This concludes that

L

(
(·)

| · |(n+1)−2s
g((·)−1)

)
(x) = C

x

|x|(n+1)+2s+2
(Lg)(x−1).

The proof of Lemma 3 is complete.

Our next step is to show that the monogenicity of

Δk+(n−1)/2((x0 + x)lPk(x)), l ∈ Z,

induces that of

Δk+(n−1)/2(f(x0 + x)Pk(x))

in general, and thus conclude the theorem. Through a translation we may assume
that the function f is holomorphic in a disc centered at the origin of the complex
plane. We can further assume that the Taylor expansion of f has real coefficients by
considering the associated holomorphic functions

g(z) = (1/2)(f(z) + f(z)) and h(z) = (1/2i)(f(z) − f(z)),

and the decomposition f = g + ih. We are to show that the series

−1∑
l=−∞

clz
l and

−1∑
l=−∞

clΔk+(n−1)/2[(x0 + x)lPk(x)]
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have the same convergence radius; and
∞∑

l=0

clz
l and

∞∑
l=0

clΔk+(n−1)/2[(x0 + x)lPk(x)]

have the same convergence radius.

For the negative power case, we refer to the quantitative relation (3) and the
estimate (3) in Proposition 2, [Q3], and obtain

|Δk+(n−1)/2[(x0 + x)lPk(x)]| ≤ C(1 + |l|)n+2k 1
|x|n+k+|l|−1

.

Based on the estimate, the two series of negative powers have the same convergence
radius.

Now we consider the positive power series. Note that now n is even. Observe
that Δs = |D|−1Δk+n/2, and so a fundamental solution of Δs is the convolution of
the Riesz potential 1

|·|n and a fundamental solution of Δk+n/2, the latter being of the
type (in the odd dimensional space)

C
1

|x|(n+1)−2s−1
,

where C is a constant depending on only n and k. This enables us to work out, in the
spirit of Lemma 4, a fundamental solution of Δs of the form

C
1

|x|(n+1)−2s
.

Following the proof of Lemma 3, we can deduce the intertwining relation

(Δs)
(

1
|x|(n+1)−2s

g(x−1)
)

= C
1

|x|(n+1)+2s+2
(Δs)(g)(x−1). (5)

Replacing s by s + 1, for g(x) = ( x
|x|2 )lPk(x), we have g(x−1) = (−1)kxlPk(x), and

Δ(k+1)+(n−1)/2((−1)kxlPk(x)) = C
1

|x|2n+2k+2
Δ(k+1)+(n−1)/2

((
x

|x|2
)l

Pk(x)

)
(x−1).

Applying Newton potential and relation (3), we have, in the distribution sense,

Δk+(n−1)/2(xlPk(x)) =
C

(l − 1)!

∫
Rn

1

1
|x − y|n−1

1
|y|2n+2k+2

∂l−1
0 ΔEPk(x)(y−1)dy.

Using the estimate obtained for the negative power terms, we conclude, through an
argument concerning homogeneity as in Lemma 4, that

|Δk+(n−1)/2[(x0 + x)lPk(x)]| ≤ C(1 + |l|)n+2k|x|l−k−n+1.

The above obtained estimate now guarantees that the two series of positive power
entries have the same convergence radius.
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