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Abstract. The L?-norm equivalence between a Cli [aid martingale f and its square
function S(f) plays an important role in the proof of the L-boundedness of Cauchy
integral operators on Lipschitz graphs and the Cliladd 7'(b) Theorem [2, 4]. This
note generalises the result to the ®-equivalence between the maximal function f*
and S(f), where ® is a nondecreasing and continuous function from IR* to IR*, of
the moderate growth ®(2u) < C1®(u) and satisfies ¢(0) = 0.
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1. Introduction

It is well known that martingale theory plays a remarkable role in analysis,
especially in harmonic analysis. Many ideas and methods in harmonic analysis
come from, or closely relate to martingale theory. In [2] R. Coifman, P. Jones
and S. Semmes gave an elementary proof of the L?-boundedness of Cauchy
integral operators on Lipschitz curves using a martingale approach. However,
their proof does not exhaust the e [edtiveness of using martingale in the prob-
lem: it depends on a separate Carleson measure argument. [1] shows that the
Carleson measure argument can be replaced by a pure martingale argument.
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The idea of [1] then motivated G. Gaudry, R-L. Long and T. Qian to generalise
the result of [2] to the higher dimensional cases, and to show that the Cli[and
T'(b) Theorem can be proved in the same spirit [4].

What plays the central role in [4] is the L?-norm-equivalence between a Clif-
ford martingale and its square function. Since the maximal function f* is L?-
bounded, this implies the L?- equivalence between f* and the square function.
This later mentioned result is associated with the function ®(t) = ¢? (in the
sense given in Th.3.3 below). In this note we shall generalise the result to some
more general functions ®.

The remaining part of this section will be devoted to introducing notation and
terminology and preliminary knowledge of Cliland algebra. In Section 2 we
discuss basic properties of Cliladd martingales. In this note our context is a
bit more general than that of [4] and our treatment is slightly di Cerknt. Section
3 proves the main result, viz. the ®-equivalence.

Let (Q,F,v) be a nonnegative o-finite space, ¢ a bounded Cliland-valued
measurable function. Consider the Cli[ond-valued measure dyu = ¢dv. The
martingales under study are with respect to du and a family {F,}>, of sub-
o-field satisfying

{Fn}>=, nondecreasing, F =UF,, NFn=0, 1.1
(Q, Fn,v) complete, o — finite,Vn. (1.2)

Let e, ..., en be the basic vectors of RY satisfying
e? = —1,eiej = —ejei, i#j,4, j=12,..,4d, (1.3)

and R the Clilond algebra over the real number field of dimension 29 gen-
eralized by the increasingly ordered subsets ea’s of {1,---,d} with the identi-
fication ea =€, ---€j,, A= {j1,- -, 71}, 1 <1 <d,eg =ep = 1.

We shall use the following norm in R :

1 1
AN=( X)Y2, A= laea. (1.4)
A A
For the norm we have the relation
Al < EMJpl, VA, p e RO, (1.5)

where k is a constant depending only on the dimension @
When at least one of A and p, say A, is of the form A = ;_, A;e;, i.e. a vector
in R4 ¢ R@ we have

kYAl < [Anl- (1.5)
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To see this, noticing that if 0 # A € RY*1, then the left and right inverse of X
is

we have, for any p € R®,
lal = XAl < KA Au] = KA Al

which gives (1.5).

In what follows we often use the fact that for a = aiazaszas,ai € R we
have |a| ~ |a1]|az||as||asa]. Constants with subscripts such as Cyp, Cy will be
considered to be the same throughout the paper. Constants C may vary from
one line to another, but remain to be the same on the same line.

2. Clilaondd Conditional Expectation, Cli [aidd Martingale

We begin with the definition of conditional expectation. Let (Q,F,v) be a
o-finite measure space, du = ¢dv a R%*1-valued measure. If |QJ, = oo, we
assume that the domain of dyu is not F but a subring of F. This does not
bring us any trouble when defining conditional expectation. Let 7 be a sub-o-
field of F such that (Q, J,v) is o-finite and complete. Denote the conditional
expectations with respect to v and ¢ by E and E, respectively. The definition
of E is standard:

- 1 1
E(@|J)=  E(¢ilJ)ei, with o= o¢ie;.

i=0 i=0

Thus E enjoys all the good properties of classical conditional expectations.
Assume that ¢ is bounded and E(¢|J) # 0, a.e. In the sequel, unless otherwise
stated, all functions under study will be assumed to be Cli[and-valued. We
define 5 5

EV(f|7) = E(8|T) L E@f1T). | € LinW), (2.1)

EO(f|T) = E(fOlDE@|T) L fe L), (2.1)

E® and EM satisfy the following properties.
(@) EO is right-Cli [and-scalar linear and both left- and right-real-scalar linear,
and

EW(fgl7) = EO(f| g, gis J — measurable.
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For EM similar properties hold.
(b) EO|7) =1=E®7).
(c) Both E®M and EM are J-measurable, and

1 1
EOf|\Ndp= " fdp, VA€ JTNVfeL'(Av), (2.2)
A A
1 1
E(r)(f\j)dr,u = fdrILL7 VA € j,Vf S Ll(Aa V)a (22/)
A A
where 1 1 ] 1
fdp=¢fdv,  fdu=  fodv. (2.3)
A A A A

To see (2.2), notice that we have

dul s = E(¢|T)dv] 7, (2.4)

which follows from
[ 1

E@|7)dv = du, VYAeJ,v(A) < .
A A

Thus, we have
1 1 1 [

EOf|Ndu= B@F)EQF)E@Gf|F)dv= o¢fdv= fdp.
A A A A

(2.2") can be verified similarly.
(d) When 71 C J», we have, denoting E® or EM by E,

E(E(f|72)|J1) = E(f|T1). (2.5)
For E = E®_ (2.5) is verified as follows.

EOEO(f|R)|0) = EV(E@|T2)  E(of|T2)| 1)
E(¢|J0) T E(SE(9]T2) T E(of|T2)| 1)
BE(¢| )L E(bf| )

= EO(f| 7).

As a consequence of (2.5), we have

E(E(f|T2) — E(f|T1)|J1) = 0. (2.6)
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Now assume that we have a nondecreasing family {Fn}>. In the classical
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where, again, we used the boundedness of ¢. Since g is arbitrary, we conclude
the bounds of E(¢|J).

The case p = oo is similar.

Now we turn to the investigation of Cli [aid martingales. Let (Q, F,v) be a o-
finite measure space endowed with a nondecreasing family {1}, satisfying
(1.1) and (1.2). From the property (f), it is natural to assume

Cot < |E(¢|Fn)| < Co,ace.,Vn. (2.9)

Let f = (fn)>, be a R@-valued process. (fn)>,, is said to be a I- or r-
martingale, if for E = E®D or E = EM | respectively,

fn = E(fasa]Frn), ace. (2.10)

For a martingale f = (f,) ( [- or r-), the maximal and the square functions
are defined by

f:;:SUp|fk‘, f*:f:oﬂ (211)
k<n
1
Sn(f) = (f-wl?+  1AFP)Y2,  S(f) = Sw(f), (2.12)

where f_., = limy_ _ frn pointwise.
f = (fn)>,Iis said to be LP-bounded, 1 < p < oo, if

I fllp = sup [ fnllp < o0. (2.13)

All the arguments in the sequel are the same for - and r-martingales and we
use FE to represent either E® or E . We want to show that the maximal
operator x is of type p-p for 1 < p < oo, and weak type 1-1. Moreover, for the
case 1 < p < oo, every LP-bounded martingale f = (fn)>°, is generated by
some function f € LP(v), i.e.

fn=E(f|Fn), Vn. (2.14)

For 1 < p < o0, all LP-bounded martingales have pointwise limits limy_. o fn
and limp_ _ . fn. We state these as propositions.

Proposition 2.1. Let 1 < p < oo. Then the maximal operator * is of type p-p
and weak type 1-1. For 1 < p < oo, every LP-bounded martingale f = (fn)>,
is generated by some function f € LP(v), with || flp = sSupp, || fnllp-

Proof. Let f = (fn)2°,, be a martingale, say, for example, a left one. Then

fn = E(fn+1|Fn) = E(¢|fn)7lﬁ(¢fn+l‘fn);
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fan = lj(fn+2|fn)~:~E(¢|fn)_1§(¢fn+2‘fn)
= E(¢‘fn)_1E(E(¢fn+2|-7:n+1)|-7:n)7

which means that

E(¢fn+1‘fn) = E(E(¢fn+2|~7:n+l)|fn)v

i.e., (E(¢fn+1]Fn))>, is a martingale with respect to (Q, F, v, {Fn}>=.). Itis
also LP-bounded, owing to the relation

E(bfa+1]Fn) = E(8|Fn) fn,

which follows from the expression of fi, in the beginning of the proof.
Furthermore, we have

Sl;l‘p | fallp ~ S'-rip ‘|E(¢fn+l|fn)|‘p;

J* ~ sup |E(¢ frra| Fn)l.

So * is of type p-p and weak type 1-1 owing to the corresponding results in
the classical case. Now for 1 < p < oo, for any integer M > 0, decomposing
Q = UQi, Qx € F_m, |Q«| < co. Since for every k, (E(¢ fo+1|Frn)xaw)n>—m IS
a classical martingale, we can obtain some ¢f € LP(Qx, v) such that on Qx

E(¢frri|Fn) = E@f|Fn), n>—M.
Thus
fn = E(@|Fn) Y E(¢ faet|Fn) = E(O|Fn) LE(Of|Fn) = E(f|Fn), n > —M.

Letting M — oo, (2.14) follows. Furthermore, we have
1/ xaxllp < Csup||faxallp,
n

and
I£llp < C'sUp | falp-

In addition, supy || fnllp < CI|llp and 50 |f[lp & supy || fnlls. The proof of the
proposition is complete.

By virtue of the proposition we can identify a LP-bounded martingale with the
function that generalizes the martingale in the sense of (2.14).
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Proposition 2.2. Let 1 < p < oo, f = (fn)>,, be a LP-bounded martingale.
Then
nIim fa=f, forl<p< oo, (2.15)

where f is the function specified in Prop 2.1 that generalizes (fn)>,,, and

nIim fn exists, for p=1, (2.1%)
. lim fn=0, for 1 <p <ooc. (2.15")

Proof. Let Q = UQy, Q« € Fo, |Qk| < 00, Vk. Then both (E(8|Fn)xa,)n=0 and
(E(¢fa+1lFn)xa,)n=0 are LP-bounded martingales with respect to (Qx, F N
Q, {Fn N Qk}n>0), and have their respective limits:

im E(¢|Fn) = ¢, a.c. on every Q,

im E(¢fa+1]Fn) = ¢g, a.c. for some gon every Q,, and g = fif 1 < p < oo.

The last two limits conclude (2.15) and (2.15"). Now we prove (2.15"). Denote
O(w) = liMmp__oo|fn]- Then (w) < f*(w), and O(w) is NFn measurable. This
concludes #(w) = a > 0, a.e. By the weak type p-p of %, for 1 < p < oo, we
have

{O(W) > Aty < [{F" > Adly < (%If\lp)p, vA>0.

So, a = 0. This proves the assertion (2.15"). The proof of the proposition is
complete.

Remark. In the classical case, for 1 < p < oo, the assertion limn_._ fn =0,
a.e., was proved in [3].

3. ®-Equivalence Between S(f) and f*
The proof of the ®-equivalence will refer to the following result.

Theorem 3.1. There exists a constant C' depending only on Cy in (2.9) such
that
CTHE(S(f)?|Fo) < E(If?|Fo) < CE(S(f)?|Fo). (3.1)

For a proof we refer the reader to [4]. It is noted that in the inequalities of
the theorem and all the related ones in the sequel the associated constants
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depend only on Cy in (2.9), but not on {F}>_, nor on the martingales under
consideration. Owing to this, for any integer M > 0, the estimates associated
with the family {Fn}n>_m involve the same constants. Taking limit M/ — oo,
we conclude the case {Fn}>,.

Let ® be a nondecreasing and continuous function from IR* to IR satisfying
®(0) = 0 and the moderate growth condition

®(2u) < C10(u), u > 0. (3.2)

We shall begin with establishing a ®-equivalence between S(f) and f* for those
martingales f which are predictably dominated, in the sense

|Anf‘ < Dn_1, Vn, (3.3)

where D = (Dp) is a nonnegative nondecreasing and adapted process to {Fn}.
Still, we need only to consider the case {Fn}n>o (In this case for any process
A = (An)n>o, we add A_; = 0, so any f which satisfies (3.3) must satisfy
fo = 0. This is not an essential restriction, of course).

Theorem 3.2. Let f = (fn)n>0 be a l- or r-martingale satisfying (3.3). Then

1 1
O(S(H)dr < C  O(f* + Doo)dv, (3.4)
Q Q
1 1
O(f)dvy < C O(S(f) + Doo)dr, (3.4")
Q Q

where the involved constants depend only on Cy, C1.

Proof. We shall use the stopping time argument and the good A-inequality. Let
« be an arbitrary real number that is bigger than 1 and 3 > 0 to be determined
later and X be any level. Notice that

|fal < |fa—al +|Anfl < fa1 + Dno1 = pn-1.
Define the stopping time
T =inf{n:pn > BA}
and the associated stopping martingale

FO = (f§)n0 = (Fminn.t))nz0-
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Then we have

{T < OO} = {poo > 6)‘}7 f(T)* = Sup ‘fmin(n,r)‘ < f: < Pr-1 < BA-
n

Now consider the adapted process (Sn(f())n>0, and define the stopping time
T =inf{n: Sn(f) > \}.
Then we have
{T <o} ={S(f) > A}, Sra(fO) <A
Thus, we have

{S(f) > ar} C {7 < oo} U{T =00,5:(f)% > a®)?}
C {1 < oo} U{S(f™)2 — St_1(f )2 > (a? — 1)N?},

and

th

(X{s(FM)2—sr_1 (FM)2>(02—1)A2} | FT)

@2 12 - myve E(SUOY = Stalf O 7).

Now consider a new underlying space (Q, F, v, {Jn }n>0) With Jn = Fr4n, and

the martingale

9 = (gn)nzo With g = £ — O

Then we have
Ang = 1('T-|)-n - ‘I('T—)l - (f1('T-|)-n—1 - f1('r—)1) = AT+nf(T)
and

O
(g (0t
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Now, since {S(f® > a\} C {T < oo}, we have
1

{S(f) > ar}y < X{S(F()=an}dV

==
E(x(seey=any | Fr)dv

Iﬁ<oo}
E(x{s(fmy—sr_1(Fy2>(@—na2} [ FT)dv

{T<oo}
Cp? Cp?
ST HSU®D) > Al < S0

IN

A

{S(f) > Ablv,

and hence
C3?
a2 -1

which is the desired good A-inequality for the coupl

e (S *+ D). The ]
one for the couple (f*, S(f) + Do) is similar. ]ﬁg&;p&%dfg%]’rgQ?if%MF)SS(e)-ssl(c)-aalngl(e)-t(d)-3

{S(f) > ar}ly < {poe > BAY + {S(f) > Abl,
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(See %for the proof of t%classical case.) II\%)IW for f = (fn)n>o0, We have

OS(Ndr < C O(S()dv+C  (S(h))dv
i S I =
C Bg)+C  Od)+C  O(  |[Dahl)dv
0 Q Q
-
C O(f)dv.
Q

IN

IN

For its reciprocal the proof is similar.
Now consider the dyadic type case. We claim that in the case (3.3) holds for
every martingale f = (fn),, for some suitably defined D = (D). In fact,

Dn

In—1 = Sup maX(|Aka|(k‘)7 ‘Akaﬂk))
kgn 1 2

is a nonnegative, nondecreasing and adapted process such that
|Anf‘ é -anlv

and
Do, < Cmin(f*, S(f))-

Only the last assertion needs tOEIbe verified. In fact,

Ay fdp =0
| (k—1)

implies |
() =0

1 (0
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