CLIFFORD MARTINGALE Φ-EQUIVALENCE BETWEEN $S(f)$ AND f^{*}

R-L. Long
Institute of Mathematics
Academia Sinica
Beijing 100080, P.R. China
and
Tao Qian
School of Mathematical and Computer Sciences
The University of New England
Armidale, NSW 2351 Australia
E-mail address: tao@neumann.une.edu.au

(Received: J anuary 13th, 1998, A ccepted: February 26th, 1998)

Abstract

The L^{2}-norm equivalence between a Clifford martingale f and its square function $S(f)$ plays an important role in the proof of the L^{2}-boundedness of Cauchy integral operators on Lipschitz graphs and the Clifford $T(b)$ Theorem [2, 4]. This note generalises the result to the Φ-equivalence between the maximal function f^{*} and $S(f)$, where Φ is a nondecreasing and continuous function from \mathbb{R}^{+}to \mathbb{R}^{+}, of the moderate growth $\Phi(2 u) \leq C_{1} \Phi(u)$ and satisfies $\Phi(0)=0$. 1991 Mathematics Subject Classification. Primary: 60G46; Secondary: 60G42

1. Introduction

It is well known that martingale theory plays a remarkable role in analysis, especially in harmonic analysis. Many ideas and methods in harmonic analysis come from, or closely relate to martingale theory. In [2] R. Coifman, P. J ones and S. Semmes gave an elementary proof of the L^{2}-boundedness of Cauchy integral operators on Lipschitz curves using a martingale approach. However, their proof does not exhaust the effectiveness of using martingale in the problem: it depends on a separate Carleson measure argument. [1] shows that the Carleson measure argument can be replaced by a pure martingale argument.

Advances in Applied Clifford Algebras 8 No. 1, 95-107 (1998)

The idea of [1] then motivated G. Gaudry, R-L. Long and T. Qian to generalise the result of [2] to the higher dimensional cases, and to show that the Clifford $T(b)$ Theorem can be proved in the same spirit [4].
What plays the central role in [4] is the L^{2}-norm-equivalence between a Clifford martingale and its square function. Since the maximal function f^{*} is L^{2} bounded, this implies the L^{2} - equivalence between f^{*} and the square function. This later mentioned result is associated with the function $\Phi(t)=t^{2}$ (in the sense given in Th. 3.3 below). In this note we shall generalise the result to some more general functions Φ.
The remaining part of this section will be devoted to introducing notation and terminology and preliminary knowledge of Clifford algebra. In Section 2 we discuss basic properties of Clifford martingales. In this note our context is a bit more general than that of [4] and our treatment is slightly different. Section 3 proves the main result, viz. the Φ-equivalence.
Let $(\Omega, \mathcal{F}, \nu)$ be a nonnegative σ-finite space, ϕ a bounded Clifford-valued measurable function. Consider the Clifford-valued measure $d \mu=\phi d \nu$. The martingales under study are with respect to $d \mu$ and a family $\left\{\mathcal{F}_{\mathrm{n}}\right\}_{-\infty}^{\infty}$ of sub-σ-field satisfying

$$
\begin{gather*}
\left\{\mathcal{F}_{\mathrm{n}}\right\}_{-\infty}^{\infty} \quad \text { nondecreasing, } \quad \mathcal{F}=\cup \mathcal{F}_{\mathrm{n}}, \quad \cap \mathcal{F}_{\mathrm{n}}=\emptyset \tag{1.1}\\
\left(\Omega, \mathcal{F}_{\mathrm{n}}, \nu\right) \quad \text { complete }, \tag{1.2}\\
\sigma-\text { finite } \forall n
\end{gather*}
$$

Let $\mathrm{e}_{1}, \ldots, \mathrm{e}_{\mathrm{n}}$ be the basic vectors of R^{d} satisfying

$$
\begin{equation*}
\mathrm{e}^{2}=-1, \mathrm{e}_{\mathrm{i}} \mathrm{e}_{\mathrm{j}}=-\mathrm{e}_{\mathrm{j}} \mathrm{e}_{\mathrm{i}}, \quad i \neq j, i, \quad j=1,2, \ldots, d, \tag{1.3}
\end{equation*}
$$

and $R^{(d)}$ the Clifford algebra over the real number field of dimension 2^{d} generalized by the increasingly ordered subsets e_{A} 's of $\{1, \cdots, d\}$ with the identification $\mathrm{e}_{\mathrm{A}}=\mathrm{e}_{\mathrm{j}_{1}} \cdots \mathrm{e}_{\mathrm{j}_{l}}, A=\left\{j_{1}, \cdots, j_{1}\right\}, 1 \leq l \leq d, \mathrm{e}_{\emptyset}=\mathrm{e}_{0}=1$.
We shall use the following norm in $\mathrm{R}^{(\mathrm{d})}$:

$$
\begin{equation*}
|\lambda|=\left({ }_{\mathrm{A}}^{\mathrm{X}} \lambda_{\mathrm{A}}^{2}\right)^{1 / 2}, \quad \lambda={ }_{\mathrm{A}}^{\mathrm{X}} \lambda_{\mathrm{A}} \mathrm{e}_{\mathrm{A}} . \tag{1.4}
\end{equation*}
$$

For the norm we have the relation

$$
\begin{equation*}
|\lambda \mu| \leq k|\lambda \| \mu|, \quad \forall \lambda, \mu \in \mathbf{R}^{(\mathrm{d})} \tag{1.5}
\end{equation*}
$$

where k is a constant depending only on the dimensionp d.
When at least one of λ and μ, say λ, is of the form $\lambda={ }_{i=0}^{d} \lambda_{i} \mathrm{e}_{\mathrm{i}}$, i.e. a vector in $R^{d+1} \subset R^{(d)}$ we have

$$
k^{-1}|\lambda||\mu| \leq|\lambda \mu| .
$$

To se this, noticing that if $0 \neq \lambda \in \mathrm{R}^{\mathrm{d}+1}$, then the left and right inverse of λ is

$$
\lambda^{-1}=\frac{\bar{\lambda}}{|\lambda|^{2}},
$$

we have, for any $\mu \in \mathbf{R}^{(d)}$,

$$
|\mu|=\left|\lambda^{-1} \lambda \mu\right| \leq k\left|\lambda^{-1}\right||\lambda \mu|=k|\lambda|^{-1}|\lambda \mu|
$$

which gives (1.5').
In what follows we often use the fact that for $a=a_{1} a_{2} a_{3} a_{4}, a_{i} \in \mathrm{R}^{\mathrm{d}+1}$ we have $|a| \approx\left|a_{1}\right|\left|a_{2}\right|\left|a_{3}\right|\left|a_{4}\right|$. Constants with subscripts such as C_{0}, C_{1} will be considered to be the same throughout the paper. Constants C may vary from one line to another, but remain to be the same on the same line.

2. Clifford Conditional Expectation, Clifford M artingale

We begin with the definition of conditional expectation. Let $(\Omega, \mathcal{F}, \nu)$ be a σ-finite measure space, $d \mu=\phi d \nu$ a $\mathrm{R}^{\mathrm{d}+1}$-valued measure If $|\Omega|_{\nu}=\infty$, we assume that the domain of $d \mu$ is not \mathcal{F} but a subring of \mathcal{F}. This does not bring us any trouble when defining conditional expectation. Let \mathcal{J} bea sub- σ field of \mathcal{F} such that (Ω, \mathcal{J}, ν) is σ-finite and complete. Denote the conditional expectations with respect to ν and μ by \tilde{E} and E, respectively. The definition of \tilde{E} is standard:

Thus \tilde{E} enjoys all the good properties of classical conditional expectations. Assume that ϕ is bounded and $E(\phi \mid \mathcal{J}) \neq 0$, a.e. In the sequel, unless otherwise stated, all functions under study will be assumed to be Clifford-valued. We define

$$
\begin{array}{ll}
E^{(1)}(f \mid \mathcal{J})=\tilde{E}(\phi \mid \mathcal{J})^{-1} \tilde{E}(\phi f \mid \mathcal{J}), & f \in L_{\mathrm{loc}}^{1}(\nu), \\
E^{(r)}(f \mid \mathcal{J})=\tilde{E}(f \phi \mid \mathcal{J}) \tilde{E}(\phi \mid \mathcal{J})^{-1} . & f \in L_{\mathrm{loc}}^{1}(\nu), \tag{2.1'}
\end{array}
$$

$E^{(1)}$ and $E^{(\mathrm{r})}$ satisfy the following properties.
(a) $E^{(1)}$ is right-Clifford-scalar linear and both left-and right-real-scalar linear, and

$$
E^{(1)}(f g \mid \mathcal{J})=E^{(1)}(f \mid \mathcal{J}) g, \quad g \text { is } \mathcal{J} \text { - measurable }
$$

For $E^{(r)}$ similar properties hold.
(b) $E^{(\mathrm{l})}(1 \mid \mathcal{J})=1=E^{(\mathrm{r})}(1 \mid \mathcal{J})$.
(c) Both $E^{(1)}$ and $E^{(r)}$ are \mathcal{J}-measurable, and

$$
\begin{align*}
& \mathrm{Z} \\
& \mathrm{Z}^{\mathrm{A}} \mathrm{E}^{(1)}(f \mid \mathcal{J}) d_{1} \mu=\mathrm{Z}_{\mathrm{A}}^{\mathrm{A}} f d_{1} \mu, \quad \forall A \in \mathcal{J}, \forall f \in L^{1}(A, \nu), \tag{2.2}\\
& \mathrm{A}^{(\mathrm{r})}(f \mid \mathcal{J}) d_{\mathrm{r}} \mu={ }_{\mathrm{A}} \mathrm{Z} d_{\mathrm{r}} \mu, \quad \forall A \in \mathcal{J}, \forall f \in L^{1}(A, \nu),
\end{align*}
$$

where

To see (2.2), notice that we have

$$
\begin{equation*}
\left.d \mu\right|_{\mathcal{J}}=\left.\tilde{E}(\phi \mid \mathcal{J}) d \nu\right|_{\mathcal{J}} \tag{2.4}
\end{equation*}
$$

which follows from

$$
{ }_{\mathrm{A}}^{\mathrm{Z}} \tilde{E}(\phi \mid \mathcal{J}) d \nu={\underset{\mathrm{A}}{ }}_{\mathrm{Z}} d \mu, \quad \forall A \in \mathcal{J}, \nu(A)<\infty .
$$

Thus, we have
(2.2') can be verified similarly.
(d) When $\mathcal{J}_{1} \subset \mathcal{J}_{2}$, we have, denoting $E^{(\mathrm{l})}$ or $E^{(\mathrm{r})}$ by E,

$$
\begin{equation*}
E\left(E\left(f \mid \mathcal{J}_{2}\right) \mid \mathcal{J}_{1}\right)=E\left(f \mid \mathcal{J}_{1}\right) . \tag{2.5}
\end{equation*}
$$

For $E=E^{(1)},(2.5)$ is verified as follows.

$$
\begin{aligned}
E^{(1)}\left(E^{(1)}\left(f \mid \mathcal{J}_{2}\right) \mid \mathcal{J}_{1}\right) & =E^{(1)}\left(\tilde{E}^{(}\left(\phi \mid \mathcal{J}_{2}\right)^{-1} \tilde{E}\left(\phi f \mid \mathcal{J}_{2}\right) \mid \mathcal{J}_{1}\right) \\
& =\tilde{E}\left(\phi \mid \mathcal{J}_{1}\right)^{-1} \tilde{E}\left(\phi \tilde{E}\left(\phi \mid \mathcal{J}_{2}\right)^{-1} \tilde{E}\left(\phi f \mid \mathcal{J}_{2}\right) \mid \mathcal{J}_{1}\right) \\
& =\tilde{E}\left(\phi \mid \mathcal{J}_{1}\right)^{-1} \tilde{E}\left(\phi f \mid \mathcal{J}_{1}\right) \\
& =E^{(I)}\left(f \mid \mathcal{J}_{1}\right) .
\end{aligned}
$$

As a consequence of (2.5), we have

$$
\begin{equation*}
E\left(E\left(f \mid \mathcal{J}_{2}\right)-E\left(f \mid \mathcal{J}_{1}\right) \mid \mathcal{J}_{1}\right)=0 \tag{2.6}
\end{equation*}
$$

Now assume that we have a nondecreasing family $\left\{\mathcal{F}_{n}\right\}_{-\infty}^{\infty}$. In the classical
where, again, we used the boundedness of ϕ. Since g is arbitrary, we conclude the bounds of $\tilde{E}(\phi \mid \mathcal{J})$.
The case $p=\infty$ is similar.
Now we turn to the investigation of Clifford martingales. Let $(\Omega, \mathcal{F}, \nu)$ be a σ finite measure space endowed with a nondecreasing family $\left\{\mathcal{F}_{n}\right\}_{-\infty}^{\infty}$ satisfying (1.1) and (1.2). From the property (f), it is natural to assume

$$
\begin{equation*}
C_{0}^{-1} \leq\left|\tilde{E}\left(\phi \mid \mathcal{F}_{n}\right)\right| \leq C_{0}, \text { a.e., } \forall n . \tag{2.9}
\end{equation*}
$$

Let $f=\left(f_{\mathrm{n}}\right)_{-\infty}^{\infty}$ be a $\mathbf{R}^{(\mathrm{d})}$-valued process. $\left(f_{\mathrm{n}}\right)_{-\infty}^{\infty}$ is said to be a l - or r martingale, if for $E=E^{(1)}$ or $E=E^{(r)}$, respectively,

$$
\begin{equation*}
f_{\mathrm{n}}=E\left(f_{\mathrm{n}+1} \mid \mathcal{F}_{\mathrm{n}}\right), \text { a.e. } \tag{2.10}
\end{equation*}
$$

For a martingale $f=\left(f_{\mathrm{n}}\right)$ (l - or r-), the maximal and the square functions are defined by

$$
\begin{gather*}
f_{\mathrm{n}}^{*}=\sup _{\mathrm{k} \leq \mathrm{n}}\left|f_{\mathrm{k}}\right|, \quad f^{*}=f_{\infty}^{*}, \tag{2.11}\\
S_{\mathrm{n}}(f)=\left(\left|f_{-\infty}\right|^{2}+{ }_{-\infty}^{\mathrm{Xn}}\left|\Delta_{\mathrm{k}} f\right|^{2}\right)^{1 / 2}, \quad S(f)=S_{\infty}(f), \tag{2.12}
\end{gather*}
$$

where $f_{-\infty}=\lim _{\mathrm{n} \rightarrow-\infty} f_{\mathrm{n}}$ pointwise
$f=\left(f_{\mathrm{n}}\right)_{-\infty}^{\infty}$ is said to be $L^{\text {p}}$-bounded, $1 \leq p \leq \infty$, if

$$
\begin{equation*}
\|f\|_{\mathrm{p}}=\sup _{\mathrm{n}}\left\|f_{\mathrm{n}}\right\|_{\mathrm{p}}<\infty \tag{2.13}
\end{equation*}
$$

All the arguments in the sequed are the same for l - and r-martingales and we use E to represent either $E^{(1)}$ or $E^{(r)}$. We want to show that the maximal operator * is of type $p-p$ for $1<p \leq \infty$, and weak type 1-1. Moreover, for the case $1<p \leq \infty$, every $L^{\text {p }}$-bounded martingale $f=\left(f_{\mathrm{n}}\right)_{-\infty}^{\infty}$ is generated by some function $f \in L^{\mathrm{p}}(\nu)$, i.e.

$$
\begin{equation*}
f_{\mathrm{n}}=E\left(f \mid \mathcal{F}_{\mathrm{n}}\right), \quad \forall n . \tag{2.14}
\end{equation*}
$$

For $1 \leq p \leq \infty$, all $L^{\text {p}}$-bounded martingales have pointwise limits $\lim _{n \rightarrow \infty} f_{\mathrm{n}}$ and $\lim _{n \rightarrow-\infty} f_{n}$. We state these as propositions.
Proposition 2.1. Let $1<p \leq \infty$. Then the maximal operator $*$ is of type $p-p$ and weak type 1-1. For $1<p \leq \infty$, every $L^{\text {p }}$-bounded martingale $f=\left(f_{n}\right)_{-\infty}^{\infty}$ is generated by some function $f \in L^{\mathrm{p}}(\nu)$, with $\|f\|_{\mathrm{p}} \approx \sup _{\mathrm{n}}\left\|f_{\mathrm{n}}\right\|_{\mathrm{p}}$.
Proof. Let $f=\left(f_{n}\right)_{-\infty}^{\infty}$ be a martingale, say, for example, a left one. Then

$$
f_{\mathrm{n}}=E\left(f_{\mathrm{n}+1} \mid \mathcal{F}_{\mathrm{n}}\right)=\tilde{E}\left(\phi \mid \mathcal{F}_{\mathrm{n}}\right)^{-1} \tilde{E}\left(\phi f_{\mathrm{n}+1} \mid \mathcal{F}_{\mathrm{n}}\right),
$$

$$
\begin{aligned}
f_{\mathrm{n}} & =E\left(f_{\mathrm{n}+2} \mid \mathcal{F}_{\mathrm{n}}\right)=\tilde{E}\left(\phi \mid \mathcal{F}_{\mathrm{n}}\right)^{-1} \tilde{E}\left(\phi f_{\mathrm{n}+2} \mid \mathcal{F}_{\mathrm{n}}\right) \\
& =\tilde{E}\left(\phi \mid \mathcal{F}_{\mathrm{n}}\right)^{-1} \tilde{E}\left(\tilde{E}\left(\phi f_{\mathrm{n}+2} \mid \mathcal{F}_{\mathrm{n}+1}\right) \mid \mathcal{F}_{\mathrm{n}}\right),
\end{aligned}
$$

which means that

$$
\tilde{E}\left(\phi f_{\mathrm{n}+1} \mid \mathcal{F}_{\mathrm{n}}\right)=\tilde{E}\left(\tilde{E}\left(\phi f_{\mathrm{n}+2} \mid \mathcal{F}_{\mathrm{n}+1}\right) \mid \mathcal{F}_{\mathrm{n}}\right)
$$

i.e., $\left(\tilde{E}\left(\phi f_{\mathrm{n}+1} \mid \mathcal{F}_{\mathrm{n}}\right)\right)_{-\infty}^{\infty}$ is a martingale with respect to $\left(\Omega, \mathcal{F}, \nu,\left\{\mathcal{F}_{\mathrm{n}}\right\}_{-\infty}^{\infty}\right)$. It is also $L^{\text {p}}$-bounded, owing to the relation

$$
\tilde{E}\left(\phi f_{\mathrm{n}+1} \mid \mathcal{F}_{\mathrm{n}}\right)=\tilde{E}\left(\phi \mid \mathcal{F}_{\mathrm{n}}\right) f_{\mathrm{n}}
$$

which follows from the expression of f_{n} in the beginning of the proof. Furthermore, we have

$$
\begin{gathered}
\sup _{\mathrm{n}}\left\|f_{\mathrm{n}}\right\|_{\mathrm{p}} \approx \sup _{\mathrm{n}}\left\|\tilde{E}\left(\phi f_{\mathrm{n}+1} \mid \mathcal{F}_{\mathrm{n}}\right)\right\|_{\mathrm{p}}, \\
f^{*} \approx \sup _{\mathrm{n}}\left|\tilde{E}\left(\phi f_{\mathrm{n}+1} \mid \mathcal{F}_{\mathrm{n}}\right)\right| .
\end{gathered}
$$

So $*$ is of type $p-p$ and weak type 1-1 owing to the corresponding results in the classical case. Now for $1<p \leq \infty$, for any integer $M>0$, decomposing $\Omega=\cup \Omega_{\mathrm{k}}, \Omega_{\mathrm{k}} \in \mathcal{F}_{-\mathrm{M}},\left|\Omega_{\mathrm{k}}\right|<\infty$. Since for every $k,\left(E\left(\phi f_{\mathrm{n}+1} \mid \mathcal{F}_{\mathrm{n}}\right)_{\Omega_{k}}\right)_{\mathrm{n} \geq-\mathrm{M}}$ is a classical martingale, we can obtain some $\phi f \in L^{\mathrm{p}}\left(\Omega_{\mathrm{k}}, \nu\right)$ such that on Ω_{k}

$$
\tilde{E}\left(\phi f_{\mathrm{n}+1} \mid \mathcal{F}_{\mathrm{n}}\right)=\tilde{E}\left(\phi f \mid \mathcal{F}_{\mathrm{n}}\right), \quad n \geq-M
$$

Thus

$$
f_{\mathrm{n}}=\tilde{E}\left(\phi \mid \mathcal{F}_{\mathrm{n}}\right)^{-1} \tilde{E}\left(\phi f_{\mathrm{n}+1} \mid \mathcal{F}_{\mathrm{n}}\right)=\tilde{E}\left(\phi \mid \mathcal{F}_{\mathrm{n}}\right)^{-1} \tilde{E}\left(\phi f \mid \mathcal{F}_{\mathrm{n}}\right)=E\left(f \mid \mathcal{F}_{\mathrm{n}}\right), \quad n \geq-M
$$

Letting $M \rightarrow \infty$, (2.14) follows. Furthermore, we have

$$
\left\|f \chi_{\Omega_{k}}\right\|_{\mathrm{p}} \leq C \sup _{\mathrm{n}}\left\|f_{\mathrm{n}} \chi_{\Omega_{k}}\right\|_{\mathrm{p}},
$$

and

$$
\|f\|_{\mathrm{p}} \leq C \sup _{\mathrm{n}}\left\|f_{\mathrm{n}}\right\|_{\mathrm{p}} .
$$

In addition, $\sup _{\mathrm{n}}\left\|f_{\mathrm{n}}\right\|_{\mathrm{p}} \leq C\|f\|_{\mathrm{p}}$ and so $\|f\|_{\mathrm{p}} \approx \sup _{\mathrm{n}}\left\|f_{\mathrm{n}}\right\|_{\mathrm{p}}$. The proof of the proposition is complete
By virtue of the proposition we can identify a $L^{\text {p}}$-bounded martingale with the function that generalizes the martingale in the sense of (2.14).

102 Clifford Martingale Φ-Equivalence Between $S(f)$ and $f^{*} \quad$ R-L. Long and Tao Qian
Proposition 2.2. Let $1 \leq p \leq \infty, f=\left(f_{\mathrm{n}}\right)_{-\infty}^{\infty}$ be a L^{p}-bounded martingale. Then

$$
\begin{equation*}
\lim _{\mathrm{n} \rightarrow \infty} f_{\mathrm{n}}=f, \text { for } 1<p \leq \infty \tag{2.15}
\end{equation*}
$$

where f is the function specified in Prop 2.1 that generalizes $\left(f_{n}\right)_{-\infty}^{\infty}$, and

$$
\begin{gather*}
\lim _{\mathrm{n} \rightarrow \infty} f_{\mathrm{n}} \text { exists, for } p=1 \\
\lim _{\mathrm{n} \rightarrow-\infty} f_{\mathrm{n}}=0, \text { for } 1 \leq p<\infty \tag{2.15"}
\end{gather*}
$$

Proof. Let $\Omega=\cup \Omega_{\mathrm{k}}, \Omega_{\mathrm{k}} \in \mathcal{F}_{0},\left|\Omega_{\mathrm{k}}\right|<\infty, \forall k$. Then both $\left(\tilde{E}\left(\phi \mid \mathcal{F}_{\mathrm{n}}\right) \chi_{\Omega_{k}}\right)_{\mathrm{n}>0}$ and $\left(\tilde{E}\left(\phi f_{\mathrm{n}+1} \mid \mathcal{F}_{\mathrm{n}}\right) \chi_{\Omega_{k}}\right)_{\mathrm{n}>0}$ are L^{p}-bounded martingales with respect to $\left(\Omega_{\mathrm{k}}, \mathcal{F} \cap\right.$ $\left.\Omega_{\mathrm{k}},\left\{\mathcal{F}_{\mathrm{n}} \cap \Omega_{\mathrm{k}}\right\}_{\mathrm{n} \geq 0}\right)$, and have their respective limits:

$$
\lim _{\mathrm{n} \rightarrow \infty} \tilde{E}\left(\phi \mid \mathcal{F}_{\mathrm{n}}\right)=\phi, \text { a.e. on every } \Omega_{\mathrm{k}},
$$

$\lim _{\mathrm{n} \rightarrow \infty} \tilde{E}\left(\phi f_{\mathrm{n}+1} \mid \mathcal{F}_{\mathrm{n}}\right)=\phi g$, a.e. for some g on every Ω_{k}, and $g=f$ if $1<p \leq \infty$. The last two limits conclude (2.15) and (2.15'). Now we prove (2.15"). Denote $\theta(\omega)=\varlimsup_{n \rightarrow-\infty}\left|f_{\mathrm{n}}\right|$. Then $\theta(\omega) \leq f^{*}(\omega)$, and $\theta(\omega)$ is $\cap \mathcal{F}_{\mathrm{n}}$ measurable This concludes $\theta(\omega)=a \geq 0$, a.e. By the weak type p - p of $*$, for $1 \leq p<\infty$, we have

$$
|\{\theta(\omega)>\lambda\}|_{\nu} \leq\left|\left\{f^{*}>\lambda\right\}\right|_{\nu} \leq\left(\frac{C}{\lambda}\|f\|_{\mathrm{p}}\right)^{\mathrm{p}}, \quad \forall \lambda>0 .
$$

So, $a=0$. This proves the assertion (2.15"). The proof of the proposition is complete.
Remark. In the classical case, for $1<p<\infty$, the assertion $\lim _{n \rightarrow-\infty} f_{\mathrm{n}}=0$, a.e., was proved in [3].
3. Φ-Equivalence B etween $S(f)$ and f^{*}

The proof of the Φ-equivalence will refer to the following result.
Theorem 3.1. There exists a constant C depending only on C_{0} in (2.9) such that

$$
\begin{equation*}
C^{-1} \tilde{E}\left(S(f)^{2} \mid \mathcal{F}_{0}\right) \leq \tilde{E}\left(|f|^{2} \mid \mathcal{F}_{0}\right) \leq C \tilde{E}\left(S(f)^{2} \mid \mathcal{F}_{0}\right) \tag{3.1}
\end{equation*}
$$

For a proof we refer the reader to [4]. It is noted that in the inequalities of the theorem and all the related ones in the sequel the associated constants
depend only on C_{0} in (2.9), but not on $\left\{\mathcal{F}_{\mathrm{n}}\right\}_{-\infty}^{\infty}$, nor on the martingales under consideration. Owing to this, for any integer $M>0$, the estimates associated with the family $\left\{\mathcal{F}_{\mathrm{n}}\right\}_{\mathrm{n} \geq-\mathrm{M}}$ involve the same constants. Taking limit $M \rightarrow \infty$, we conclude the case $\left\{\mathcal{F}_{\mathrm{n}}\right\}_{-\infty}^{\infty}$.
Let Φ be a nondecreasing and continuous function from \mathbb{R}^{+}to \mathbb{R}^{+}satisfying $\Phi(0)=0$ and the moderate growth condition

$$
\begin{equation*}
\Phi(2 u) \leq C_{1} \Phi(u), \quad u>0 . \tag{3.2}
\end{equation*}
$$

Weshall begin with establishing a Φ-equivalencebetween $S(f)$ and f^{*} for those martingales f which are predictably dominated, in the sense

$$
\begin{equation*}
\left|\Delta_{\mathrm{n}} f\right| \leq D_{\mathrm{n}-1}, \quad \forall n, \tag{3.3}
\end{equation*}
$$

where $D=\left(D_{\mathrm{n}}\right)$ is a nonnegative nondecreasing and adapted process to $\left\{\mathcal{F}_{\mathrm{n}}\right\}$. Still, we need only to consider the case $\left\{\mathcal{F}_{\mathrm{n}}\right\}_{\mathrm{n} \geq 0}$ (In this case for any process $\lambda=\left(\lambda_{\mathrm{n}}\right)_{\mathrm{n} \geq 0}$, we add $\lambda_{-1}=0$, so any f which satisfies (3.3) must satisfy $f_{0}=0$. This is not an essential restriction, of course).

Theorem 3.2. Let $f=\left(f_{\mathrm{n}}\right)_{\mathrm{n} \geq 0}$ be a l - or r-martingale satisfying (3.3). Then

$$
\begin{align*}
& { }_{\Omega}^{\mathrm{Z}} \Phi(S(f)) d \nu \leq C_{\Omega}^{\mathbf{Z}} \Phi\left(f^{*}+D_{\infty}\right) d \nu, \tag{3.4}\\
& \text { Z Z } \\
& \Phi\left(f^{*}\right) d \nu \leq C_{\Omega} \Phi\left(S(f)+D_{\infty}\right) d \nu,
\end{align*}
$$

where the involved constants depend only on C_{0}, C_{1}.
Proof. We shall use the stopping time argument and the good λ-inequality. Let α be an arbitrary real number that is bigger than 1 and $\beta>0$ to be determined later and λ be any level. Notice that

$$
\left|f_{\mathrm{n}}\right| \leq\left|f_{\mathrm{n}-1}\right|+\left|\Delta_{\mathrm{n}} f\right| \leq f_{\mathrm{n}-1}^{*}+D_{\mathrm{n}-1}=\rho_{\mathrm{n}-1} .
$$

Define the stopping time

$$
\tau=\inf \left\{n: \rho_{\mathrm{n}}>\beta \lambda\right\}
$$

and the associated stopping martingale

$$
f^{(\tau)}=\left(f_{\mathrm{n}}^{(\tau)}\right)_{\mathrm{n} \geq 0}=\left(f_{\min (n, \tau)}\right)_{\mathrm{n} \geq 0}
$$

Then we have

$$
\{\tau<\infty\}=\left\{\rho_{\infty}>\beta \lambda\right\}, \quad f^{(\tau) *}=\sup _{\mathrm{n}}\left|f_{\min (\mathrm{n}, \tau)}\right| \leq f_{\tau}^{*} \leq \rho_{\tau-1} \leq \beta \lambda
$$

Now consider the adapted process $\left(S_{\mathrm{n}}\left(f^{(\tau)}\right)\right)_{\mathrm{n} \geq 0}$, and define the stopping time

$$
T=\inf \left\{n: S_{\mathrm{n}}\left(f^{(\tau)}\right)>\lambda\right\} .
$$

Then we have

$$
\{T<\infty\}=\left\{S\left(f^{(\tau)}\right)>\lambda\right\}, \quad S_{\mathrm{T}-1}\left(f^{(\tau)}\right) \leq \lambda .
$$

Thus, we have

$$
\begin{aligned}
\{S(f)>\alpha \lambda\} & \subset\{\tau<\infty\} \cup\left\{\tau=\infty, S_{\tau}(f)^{2}>\alpha^{2} \lambda^{2}\right\} \\
& \subset\{\tau<\infty\} \cup\left\{S\left(f^{(\tau)}\right)^{2}-S_{\mathrm{T}-1}\left(f^{(\tau)}\right)^{2}>\left(\alpha^{2}-1\right) \lambda^{2}\right\},
\end{aligned}
$$

and

$$
\begin{aligned}
& \tilde{E}\left(\chi_{\left\{\mathrm{S}(\mathrm{f}(\tau))^{2}-\mathrm{S}_{T-1}(\mathrm{f}(\tau))^{2}>\left(\alpha^{2}-1\right) \lambda^{2}\right\}} \mid \mathcal{F}_{\mathrm{T}}\right) \\
& \leq \frac{1}{\left(\alpha^{2}-1\right) \lambda^{2}} \tilde{E}\left(S\left(f^{(\tau)}\right)^{2}-S_{\mathrm{T}-1}\left(f^{(\tau)}\right)^{2} \mid \mathcal{F}_{\mathrm{T}}\right) .
\end{aligned}
$$

Now consider a new underlying space $\left(\Omega, \mathcal{F}, \nu,\left\{\mathcal{J}_{\mathrm{n}}\right\}_{\mathrm{n} \geq 0}\right)$ with $\mathcal{J}_{\mathrm{n}}=\mathcal{F}_{\mathrm{T}+\mathrm{n}}$, and the martingale

$$
g=\left(g_{\mathrm{n}}\right)_{\mathrm{n} \geq 0} \text { with } g_{\mathrm{n}}=f_{\mathrm{T}+\mathrm{n}}^{(\tau)}-f_{\mathrm{T}-1}^{(\tau)} .
$$

Then we have

$$
\Delta_{\mathrm{n}} g=f_{\mathrm{T}+\mathrm{n}}^{(\mathrm{T})}-f_{\mathrm{T}-1}^{(\tau)}-\left(f_{\mathrm{T}+\mathrm{n}-1}^{(\tau)}-f_{\mathrm{T}-1}^{(\tau)}\right)=\Delta_{\mathrm{T}+\mathrm{n}} f^{(\tau)}
$$

and
$S(g)^{2}=$

Now, since $\left\{S\left(f^{(\tau)}>\alpha \lambda\right\} \subsetneq\{T \leq \infty\}\right.$, we have

$$
\begin{aligned}
& \left|\left\{S\left(f^{(\tau)}\right)>\alpha \lambda\right\}\right| \nu \leq Z_{Z^{\{T<\infty\}}} \chi_{\{\mathrm{S}(f(\tau) \mid>\alpha \lambda\}} d \nu \\
& =\mathrm{Z}^{\{\mathrm{T}<\infty\}} \tilde{E}\left(\chi_{\{\mathrm{S}(\mathrm{f}(\tau))>\alpha \lambda\}} \mid \mathcal{F}_{\mathrm{T}}\right) d \nu
\end{aligned}
$$

$$
\begin{aligned}
& \leq \frac{C \beta^{2}}{\alpha^{2}-1}\left|\left\{S\left(f^{(\tau)}\right)>\lambda\right\}\right|_{\nu} \leq \frac{C \beta^{2}}{\alpha^{2}-1}|\{S(f)>\lambda\}|_{\nu},
\end{aligned}
$$

and hence

$$
|\{S(f)>\alpha \lambda\}|_{\nu} \leq\left|\left\{\rho_{\infty}>\beta \lambda\right\}\right|_{\nu}+\frac{C \beta^{2}}{\alpha^{2}-1}|\{S(f)>\lambda\}|_{\nu},
$$

which is the desired good λ-inequality for the couple ($S(f), f^{*}+D_{\infty}$). The one for the couple ($f^{*}, S(f)+D_{\infty}$) is similar. From them we obtain (3.4) and

106 Clifford Martingale Φ-Equivalence Between $S(f)$ and $f^{*} \quad$ R-L. Long and Tao Qian
(See[反] for the proof of the classical case.) Now for $f=\left(f_{\mathbf{n}}\right)_{n \geq 0}$, we have

$$
\leq C_{\Omega} \Phi\left(f^{*}\right) d \nu .
$$

For its reciprocal the proof is similar.
Now consider the dyadic type case We claim that in the case (3.3) holds for every martingale $f=\left(f_{\mathrm{n}}\right)_{-\infty}^{\infty}$ for some suitably defined $D=\left(D_{\mathrm{n}}\right)$. In fact,

$$
\left.D_{\mathrm{n}-1}\right|_{\mathrm{I}_{n-1}}=\sup _{\mathrm{k} \leq \mathrm{n}} \max \left(\left|\Delta_{\mathrm{k}} f\left\|_{\mathrm{I}_{1}^{(k)}}, \mid \Delta_{\mathrm{k}} f\right\|_{I_{2}^{(k)}}\right)\right.
$$

is a nonnegative, nondecreasing and adapted process such that

$$
\left|\Delta_{\mathrm{n}} f\right| \leq D_{\mathrm{n}-1},
$$

and

$$
D_{\infty} \leq C \min \left(f^{*}, S(f)\right) .
$$

Only the last assertion needs to be verified. In fact,

$$
\Delta_{\mathrm{k}} f d \mu=0
$$

implies

Z

$$
\begin{aligned}
& \Omega_{\Omega} \Phi(S(f)) d \nu \leq C \quad \Phi(S(g)) d \nu+C \quad \Phi(S(h)) d \nu \\
& \left.\leq C_{Z^{\Omega}}^{Z^{\Omega}} \Phi\left(g^{*}\right)+C_{\Omega}^{\mathrm{Z}} \Phi{ }^{\Omega} d^{*}\right)+C_{\Omega}^{\mathrm{Z}} \Phi\left(_{0}^{\text {(× }}\left|\Delta_{\mathrm{n}} h\right|\right) d \nu
\end{aligned}
$$

R eferences

[1] M. Cowling, G. Gaudry and T. Qian, A note on martingales with respect to complex measures, Miniconference on Operators in A nalysis, MacquarieUniversity, September 1989, "Proceedings of the Centre for Mathematical Analysis", the Australian National University, 24 (1989), pp. 10-27.
[2] Coifman C., P. J ones and S. Semmes, on Lipschitz curves, J. Amer. Math. Soc., 2 (1989), pp. 553-564.
[3] Edwards R.E. and G. Gaudry, "Littlewood-Paley and Multiplier Theory", Springer-Verlag (1977).
[4] Gaudry G., R-L. Long and T. Qian, A martingale proof of the L^{2} boundedness of the Clifford-valued singular integrals, Annali di Matematica pura ed applicata (IV), 165 (1993), pp. 369-394.
[5] Long R-L., Martingales réguliéres et Φ-inégalitès avec poids entre $f^{*}, S(f)$ et $\sigma(f)$, C.R. Acad. Sc. Paris, 291 (1980), pp. 31-34.
[6] Burkholder D., Distribution function inequalities for martingales, the Annals of Probability, 1(1973), pp. 19-42.

