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196 T. Qian

In [McQ1] the authors deal with an analogous theory on infinite Lips-
chitz graphs. They prove that the singular integral kernels associated with
the above-mentioned H*-functions are those which are holomorphic, of the
Calderén-Zygmund type, and satisfy a kind of weak-boundedness condition
(see (ii) of Theorem A below). In [McQ2] the converse result is proved. An-
other version of the theory in [McQL], [McQ2] is the H**-functional calculus
of the differential operator %a‘%, which has also been considered for instance

in [DJS] and [Mc]
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The reason why we restrict ourselves to the star-shaped Lipschitz curves
is as follows. Firstly, if a closed curve I is not star- -shaped, then the corre-
sponding difference set D ={0% z — 5 : 2,9 € I'}, where

Z{C%lnzzﬂe(q)e [ zef}’

is not contained in any double sector defined in §2, and it may eventually
sprcad over a region 0 < |z| < a,, in case I is Wmdmg enough. We are
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198 T. Qian

and |[A'llee = N < oc. Denote by pI" the 2m-periodic extension of I' to
—o0 < & < o0, and by I" the closed curve

= {exp(iz) : 2 € I'} = {exp(i(m + iA(z)) : ~7 < & < 7).

We will call T the star~shaped Lipschitz curve associoted with I

. We will use f, F' and F, etc., to denote functions defined on pI", I" and

I, respectively. For F e Lz( I, define
2 1

Fa(n) = — ‘ 27" F(z) —,

2mi o
the nth Fourier coefficient of F with respect to I'. We will sometimes sup-
press the subscript and write F(n) if no confusion can occur.

Set

o = exp(—max A(z)), 7 =exp(—minA(z)).

Similarly to [CM1] we consider the following dense subclass of L2(I) (see
also [GQW]):

AT = {ﬁ(z) (z) is holomorphm noe-n<z|<t+7

for some n > Nl

r—_ .. -+ - andsol HR (S ;t’ resnecmveiy
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and the sets
Cg,+:SgU{z€C:Im(z)>0},
C)._ =8 U{z€C:Im(z) <0}
Let X be a set defined above. Denote by

X(r)=XnNn{z€C: |Re(z)] < 7}
the truncated set, and by

the periodic set associated with the truncated one. We shall use sets of the
form exp(i0) = {exp(iz) : z € O}, where O will be the truncated sets
defined above. In the sequel H°°{Q) denotes the function space {f : Q —
C : f is holomorphic and hounded in Q}, where Q will be a double or half
sector defined above. We will use || ||oo to denote || ||ge¢q) if no confusion
can ocecur,

Let b € H°(S), w € (0,7/2]. Ther b can be decomposed into two parts:
b= bT - b, where

b+ = bX{z:Re(2)>0}a B b_ = Z:_'X{;:Re(z)<0}? -

v Wltnout log= cf g nera,lmy we assume. tnat mmA
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202 T. Qian

locally uniformly converges, as [ — o0, t0 a 2n-periodic and holomorphic
function satisfying the assertion (i). In the sequel we shall call such sequences
applicable sequences. Moreover, we shall show that limit functions defined
through different applicable sequences differ from one another by constants
bounded by ¢||b]/cc-

To proceed, we use the decomposition

Z $(z + 2km) = p(2) + Z &+ 2km) — (2km)) + Y ¢ (2kn)

k=-n ks£0 k=1
— 0+ X, + X,
We shall show that the series ), locally uniformly converges to a bounded
holomorphic function in S%(w), and some subsequence of the partial sums

of 37, converges to a constant dominated by C[|b]|co-
The convergence of 3, follows from the estimate

C.
[¢'(2)| < 3 iz '2, z €8,
deduced from the estimate in Corollary 1({i), the fact that ¢ is holomorphic

in the sectors and Cauchy’s theorem. To deal with >, we use the mean
value theorem for integrals and we have

2(n+1im

Ya@kn = | il

ydr -+ (¢ (2kn) ~ Re() (€x)) ~  Im(4} (ms))

2% k=1
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ciated with different applicable sequences may differ from one another by
constants dominated by ¢[/b]| .

Now we prove (ii) and (iii). We use the decomposition b = b+ + b~
indicated in §2. Define b5%(z) = exp(Faz)b* (2), a > 0. Let ¢* and ¢ be
associated, according to Theorem A, with b= and ¥, respectively. Owing
to the remark made after Theorem B, ¢=°(+) = ¢*(- £ ic), and the latter
are the inverse Fourier transforms of b*:®. We now define the corresponding
holomorphic and periodic functions #* and $+: in pC, | (r), respectively,
which satisfy the size condition in the assertion (i). If is to be noted that for
all %% we may, and we actually do, choose the same applicable sequence
(ny) for 5% as we have chosen for . Using the estimate in Corollary 1(i)
and the fact that ¢ is holomorphic, we can show that the convergence of 3>
is locally (in z) uniform for @ — 0, and is absolute. Let

1 +,0 _ gt &,
B0 (2) = §5(2) + 63

() = 5+ ()

(2) +Cg:1a’

where (bat’a and qS% are holomorphic and uniformly (for & — 0) bounded
in C% (). Since the convergence as n; — oo is uniform for oo — 0, we
can exchdnge the order of takmg the limits as ny — oo a.nd a — 0, and
conclude that ¢+, ¢ri ® and ¢® converge to ¢F, ¢ and cF, respectively,
locally uniformly in CY (7). Therefore, limgo () = *(z). Since for
a fixed o, $5¢ € L°°([—"7r, 1)), and the series which defines $** converges
nniformlv.in e g [—r.wlasmw oo we have

£ 50 the estimate cf ¢ agaw., the - -
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206 T. Qian im

integral over the last mentioned contour is bounded, using only the fact that
+Re(z) > 0. Therefore b is well defined with the desired bounds. We leave
the deta.lls to the mterested reader {or refer to [Q4]).
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THEOREM 3. Let w € (0,7/2] and be H®(SD). Then there exists a pair

of functions (B, ®,) such that & and &, are holomorphic in exp(iS2% () end
exp(iSY +(m)), respectively and for every p € (0, w)

& On letting & —C, we ges A
oc — -
2 3 Wi gmi-ni=lme | B(2)Fiz)dz =8 (2)F(0)].
N ; n=—0cC e<|z| s )
*1 Denoting by (G(b). Gl(b)'l a Dair of holomorphic funcitions associatec
: ) with b in the pdttern of Tneorem -, “rom the Farseval identity it follows
, that
jer . . )
o im < § (G(b)(z) ~ P())Fis) dz -+ (Gyle; - @1(e))F(0) } _
e<|z|<F
ne-

_27I'Lbll\0 mb(m) :_,1-7;(0],

where 5 (0; 1s associated with {G(b}, G1{b)} in tne Parseva! identity (iii
of Tneorem _. According o Theorem 1 {ses aiso the argument av the end
of its proof}, we can add any constant 1o G(b) and accordingly adjust the
value of b1(0) in order to maike {iii} of Theoretn 3 still hold. In particulas,

e can choose a constant such that b;{0} — b(01 = 0. The right hand side
of the last cisplayed equality then becomes zerc. Using an_approximation
to identity {F,) with the property F,(0) = 0 for all n, we conclude thaz
G{bj(zi = @(z) for z 5 0, which implies G(b){z) = &(z) for al: z €'S%/x)
owing to analyticity. Usmg the assertion (ji) of Theorem 1 on G(b) and the

i, Ik\ P B

acenmnhian fn\ nr the Sanetine AL s ﬂg----uﬁf_ A L I ,n;.. e i

~ v -
z Zexpliz,, o

2z
oo =
Y b(n)Fpi-n: ’
[ . ~ o~ dz = -
= lin: R B(2)E(z:~ + Py {explic)) F(
e~ ~ B

|lnzj>e,2€T

for all smooth funciions I dennea on T, where Frin) 4s the nth Fou
coefficient of F and b(01 =

(=xplin) ).

THEOREM 4. Let w € (0,7/2} and (8, $,) be a pair of holomorphic f
tiong defined in exp(iS2(7)} and expuS” 4 (m}), respectively, satisfying

(i} there i3 a constant ¢y such thal
Cp o=

P
T <

T exp(i€Gim);

1/
0

19(2):

{i) there is a constant c: such & | roerexpliss _ (x3) < €1, and

=, . 1 . o .. .,
@ﬁ(z]:;(@(z) +@(z7Y),.  z€exp(dSy (7))

. - . - 0
Ther for every u € (0,w), there exists a function b* in H™(S,),

‘(fn‘T e 'a‘uonsnan-

1)1‘.n--r— . . - s

e P e D e £ s i R

4. Singular integrals on star-shaped Lipschitz curves. Theresulte - - : 2 E=r0]
obtained in §5 can be usedito study +tae relations between singuiar ‘ntegrals
anc multlpner transxorms on Demudl: ulpSCD.lEZ surves. Alternamvew we can

to l(.‘ d}i
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where: in,e contour A*‘ (¢, 8; 0) 15 defined 41
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The following corollaries are versions of Theorems 3 and 4 in terms of For a function b and a function F defined in Theorem 3, by Laurent
holomeorphic extension of series of positive and negative powers (see also the series theory, the series ’
paragraph following the statement of Theorem 6 below). ) ~
+o0 Z b(n)Fr(n)z"
COROLLARY 2. Let (b)E2., € 1%° and $(z) = 10220, bpa™, 2% < 1, =
and w € (0,7/2). If there exist § > 0 such that w + 8 < w/2, and a function locally uniformly converges to a holomorphic function in the anmulus on

be H®(S) ;1) such that b(n) = by for oll +n = +1 i2,. .., then the
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210 T. Qian icm Singular integrals with holomorphic kernels 211

(ii) One can alternatively prove the boundedness of the operator for all Fe C‘g(lj), the closs of continuous functions, then there exists a
unique function &1 € H™(exp(iSS ,)), u € (0,w), such that
TooF@ =lm{ | &(~nFmdn+dilen)F(), e el ee .0
2ol B)(2) = —(@() + FY), 2 € expliS?, (7))
F e A(D),
and
where ¢(z) is the normalized tangent vector of I' at z lying inside S (), T(F) =T~ (F)
and A(I') is the class of 2m-periodic and holomorphic functions deﬁncd by _ - _ (@:81)
the condition F' € A(I") if and only if F = Fo (i~'In) € A(F). Owing to for all F € Co(T).
the decomposition of @ in the assertion (i) of Theorem 1, we have As stated in Corollary 2, for b € S the function @4.( 2) =32, b(n) 27,
Tio,)F(z) = lim S é(z ~ n)F(n) dn |z]j 1, can be holomorphically extended to exp(iCY (7)), and &7 (2) =
270N Re(sen)[>en Y ommoo 2{(n)2", (2 > 1, can be holomorphically extended to exp(CY, _{m)).
So, we have the expressmn
+ | bo(z =) F(n) dn |
—~ ’
2| Re(z—n)|>ey (6) @(Z) — Z b(n)z", =z¢ BXp(ng(‘ﬁ')).

"

+eo1 | F(n)dn + c2F(z),

-1

=00

In many cases using (6) is more convenient than using (4) in finding an
explicit formuls, for €i5 and hence for &.

where £, — 0 is an a,pproprmte subsequence of ¢ — 0, and c1 and ¢y are
,,,,,,,,,,,,,,,,,, Io...'cohstantc

& =:C; From the assertion (i) 0rc Theorem 5. the" Founer multmhe' —isg

i sup | ‘. bz — \F’lm)dnh—ﬁMF' iz} " Reiz) g |~m.7, L

Y A T corresponds to the kernels :—ﬂ’ Jo- anc 5oL E on T and'r , respecuvelv
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For Im()\) < 0 of Theorem 5. Moreover,

—iexp{iA(z — 2m)) . 1 - o
. if 0 < Re(z) < , -t 1 .
B e 107, =07 g, Bl S D IaC+2emlisen

—iexp(iAz)

_TrepUAZ) i < Re(z) < 0.
emeonn LT Re(@

= [|¢alliory € V1 + N2{dist(}, 8))} 1,

where we have used the bounds of |j¢a]|z1(pr) obtained in [McQ1].

( iexp(indw)z? £ < Re (Ef) <0 The above estimate implies that Df;p is a type-w operator ([Mc]) that
By (2) = { 1 — exp(iA2r) ' ’ allows us to define b(DFp) via spectral integrals first for those H*°-functions
= s

b with good decay prop!erties at both 0 and oc:

i ifo<Re(%—f"-)<w
1 _
oDz ,) =5 Yo Dz, —nD) " dn,
&

L 1~ exp(iA2r)

r i _ . A
1exp(iA2M)20 e o Re (mTz> <,

1 — exp(—iA27) where & is a path consisting of four rays: {s exp

(—1i8) : s goes from oo to 0}
"""" S S e 38 ooz Ao Mot sk /g 1
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te definition:of b(Iix 1 to al. tae funciions it & (&Y and prove

Wenow. ouilihe now tne F%-funciional salcuus deveioped m [Mc: cax
e |McQd1], iMcQ3l for the wmifinite Lipschitz

the operator ciasses M, and 7 F
For a tunction F & A(IM we define the differential operator. Ef; ! e Y

Flz+h) - E@

<
Al
i

this D as the ciosed operator with the largest domain in ZP{I") which satisfies 5. Fourier multipliers on star-shaped Llpschltz curves. In
110 P ) section we shall not restrict ourselves to the—H *-multipliers. ‘We wis
i(‘;::cyl {D+ F.G = / ﬁ..,z._d_ ”E!\\ point m:}t th.a,‘t a,ll- the ‘results and methc')dS'bf:mhfa Fiol\tilrierg’_fmultill)jierzl
‘ e ! 1 Tdz|E for the infinite Lipschitz graph case developed in [McQ 3; can be ads
gt S B e PROSET e ase T taor chamgesarsrthomlam b tidogaden
»its for all Fand G in A(T7.. for our purpose; and whenever we deal with a kernel on I' we refer
thall Let w € (arctan N, #/2] and A ¢ 8%, Ii is easy to verify that DFP ig the corresponding kernel on pl” via the Poisson summation formula. We
ding N ' state Fwo results Withott proofs, Both can beproved usimg the correspor

surface Dirac operator on I" and the function 4-&, given in Example (it) ie

the convolution kernel of the resolvent operator '(Dj;p - A)7! in the sens¢

Schur lemma in the present case (see (McQ3]).
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tnat F 5ot exponential vyfetin I &nd decreases exponentially. aonig the—
boundary of [i. More precisery, we have

THROREM 1 (’Qpasi:@nalyticﬂ:y principle, continuous version). Let+F' < - T S
O({Rez > 0}) N CY{Rez = 0}) be of exponential type, i.e.
(13=: |F{2)| < Ce?l  for Rez > 0 with some C < oo and @ < oc..
It -
(2) |F(kir)| < Ce™  forr =0
with some 5% € R such that ¢t +¢~ < 0 then F = 0.

The slementary proof of Theorem 1 is based on'the Laplace integral
representation of holomorphic functions of exponential type.
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