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SPARSE APPROXIMATION TO THE DIRAC-δ DISTRIBUTION

WEI QU, TAO QIAN*, AND GUAN-TIE DENG

Abstract. The Dirac-δ distribution may be realized through sequences of convlutions,
the latter being also regarded as approximation to the identity. The present study
proposes the so called pre-orthogonal adaptive Fourier decomposition (POAFD) method
to realize fast approximation to the identity. The type of sparse representation method
has potential applications in signal and image analysis, as well as in system identification.
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1. Introduction

The most common examples of approximation to the identity include those of the convo-
lution integral type by using the Poisson kernel, the heat kernel, and some more general
convolution kernels satisfying certain normalization conditions ([28]). In the series form
we have Poisson summation etc. From these classical examples one can observe that a
signal may be well approximated by a finite linear combination of the convolution kernel
of the context. In this study we develop an approximation theory of such type. The
approximation can be associated with an axiomatic or text-book formulation, that we call
H-HK formulation ([15, 29, 30]), of Hilbert space with a linear operator defined through
an inner product kernel. We give a quick revision on this formulation. Let H be a general
Hilbert space with inner product 〈·, ·〉H. Let E, the set of parameters, be a set of numbers,
or a set of vectors, whose components are real or complex numbers. E is assumed to be an
open set with respect to the usual topology of Rn or Cn. Let every p ∈ E be associated
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with an element hp ∈ H that gives rise to a linear operator L : H → CE, the latter being
the set of all functions from E to C.

L(f)(p) = 〈f, hp〉H.(1.1)

We also write F (p) = Lf(p) and denote by R(L) the function set of the images F ∈ CE

of f ∈ H under the mapping L. Let N(L) be the null space of L defined as

N(L) = {f ∈ H | L(f) = 0}.
It is easy to show that N(L) is a closed set in H. There thus exists the orthogonal
complement of N(L) in H denoted N(L)⊥, and

H = N(L)⊕N(L)⊥.

Accordingly, each f ∈ H can be uniquely written as

f = f− + f+,

where f− ∈ N(L), f+ ∈ N(L)⊥. In the set-mapping notation, there holds L(N(L)⊥) =
R(L). Denote the orthogonal projection operator from H to N(L)⊥ by P : P (f) = f+.
We introduce a new Hilbert space structure, HK , on the function set R(L), as follows:
The induced norm of F = L(f) in the range set R(L) is defined as

‖F‖HK
, ‖Pf‖H.

The norm definition induces an inner product in R(L) denoted 〈·, ·〉HK
. The new Hilbert

spaceHK , coinciding withR(L) in the set-theoretic sense, is isometric withN(L)⊥ through
the mapping L. In such notation the function K(p, q) defined

K(q, p) = 〈hq, hp〉H
is, in fact, the reproducing kernel of HK , and hence, the latter is a reproducing kernel
Hilbert space. For a proof of this, see [15] or [29]. While the H-HK formulation makes
it convenient to study linear operator theory in Hilbert spaces in general this paper will
concentrate in the particular case where the class of functions {hp}p∈E is a dense subspace
of H. In the case the null space N(L) is trivial, containing only the zero function. In fact,

〈f, hp〉 = 0 ∀p ∈ E

if and only if
L(f)(p) = 0 ∀p ∈ E,

and thus N(L) = {0} and N(L)⊥ = H = span{hp}p∈E. In the case it would be very
beneficial and instructive that although H is not a RKHS but HK is, the latter being
isometric with the former under the mapping L. The density of {hp}p∈E in H amounts
that H is a Hilbert space with a dictionary {hp/‖hp‖}p∈E. In such sense any separable
Hilbert space, therefore has a dictionary, is equivalent with a RKHS. The latter enjoys
useful properties that offer more technical methods in dealing with separable Hilbert
spaces. The best example of H-HK structure is H = L2(∂D), the L2 space on the unit
circle, and E = D, hp(e

it) = 1
1−peit , p ∈ D. In the case N(L)⊥ = H2

+(∂D) = R(L), N(L) =

H2
−(∂D), being respectively the boundary Hardy spaces inside and outside the unit circle.

It is as if the H-HK formulation is specially made for this and the other classical Hardy
spaces situation, but actually not, for the structure is possessed by all linear operator in
Hilbert spaces induced by a kernel with a parameter, and in particular includes all linear
differential and integral operators. Paper [15] initiates the sparse solutions methodology
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to basic problems of operators defined through inner product kernels within the H-HK

formulation.
The goal of this article is to introduce a particular sparse representation method in gen-
eral Hilbert spaces possessing a dictionary with the so called boundary vanishing condition

(BVC). The sparse representation is called pre-orthogonal adaptive Fourier decomposi-
tion, or POAFD in brief (see §2). POAFD is a generalization of the so called adaptive
Fourier decomposition, or AFD, originally developed for the classical complex Hardy H2

spaces. The AFD for one complex variable right fits into the delicate frame work of the
Beurling-Lax Theorem involving Blaschke products ([24]). Some engineering applications
of AFD may be found, for instance, in [11, 12, 13, 8, 33]. Some generalizations of AFD
to higher dimensions are successful [23, 1, 2, 19]. Because of lack of Blaschke product or
Takenaka-Malmquist system in context, generalizations of AFD to domains other than
the classical types, or to multi-dimensions or analytic function spaces other than the
Hardy type, however, are difficult or impossible. POAFD, with general applicability, re-
duces to AFD in the classical Hardy space case, being of the ultimate optimality among
various types of greedy algorithms (see [31] and [6]): The POAFD maximal selection is
the greediest among all the one-step-optimal selections. POAFD is, in particular, sup-
ported by repeating selection of the parameters, involving, when necessary, Gram-Schmidt
orthogonalization of directional derivatives of the dictionary elements.
If in anH-HK formulation the function set {hp/‖hp‖H}p∈E is a dictionary of the underlying
space H, then there exist two equivalent approaches to construct the POAFD type sparse
representation in H. One is a directly application of POAFD in H just by using the
dictionary properties. The other is to perform the sparse representation in HK , which
has the advantage as a RKHS, in which we have the convenience to normalize the kernels
and to prove BVC. After getting a sparse series expansion in HK we convert back the
obtained expansion to H through the isometric mapping L−1. The purpose of this study is
to develop a general sparse representation methodology for the Dirac-δ distribution with
the understanding and help from the point of view of H-HK formulation. In particular,
the RKHS approach brings in delicate analysis and helps in getting better understanding
to the subject.
In §2 we give a detailed description of the POAFD method. In §3 we develop the convolu-
tion type sparse representation of the identity in the underlying space Rd using POAFD,
including the Poisson and heat kernels and the general convolution kernel satisfying non-
degenerate and the usual decaying rate at the infinity. In §4 we develop, as a bounded E
case, the spherical Poisson sparse approximation to the identity. Having given detailed
description of the POAFD method in general Hilbert spaces with a dictionary satisfying
BVC in §2, what we do in §3 and §4, as the main body of the paper, are verifications
of its applicability to the most common and yet important models, i.e., the Poisson and
the heat kernels, convolution kernels in general, as well as the spherical Poisson kernel
case. The verifications are proceeded under the frame work of the H-HK formulation. §5
contains two illustrative examples on, respectively, the spherical Poisson POAFD on the
sphere and heat kernel POAFD in Rd.

2. POAFD in Hilbert Space with a Dictionary

The basic idea and the related concepts, including POAFD maximal selection principle,
boundary vanishing condition and multiple kernels, first appeared in [19]. The formulation
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of the method, including terminology in use, has been revised and improved, and unified
through a sequence of related studies. At the beginning POAFD is designed for sparse
representation of images defined on rectangles, being topologically identical with the 2-
torus. Later this method is extended to spaces of analytic functions other than Hardy
spaces ([9, 10, 20, 21, 5]). We now introduce some related concepts in Hilbert spaces with
a dictionary.
In the H-HK formulation HK is a RKHS with the kernel function K(q, p) = Kq(p) =
〈hq, hp〉H. Since 〈F,Kq〉 = 0 for all q ∈ E implies F = 0, we know that the function set
{Kq}q∈E is dense in HK .

Definition 2.1. A subset E of a general Hilbert space H is said to be a dictionary if

‖E‖ = 1 for E ∈ E , and span{E : E ∈ E} = H.

With the notation of the last section the normalized reproducing kernels Eq = Kq/‖Kq‖, q ∈
E, constitute a dictionary ofHK .On theH space side in any case the functions hp/‖hp‖, p ∈
E, constitute a dictionary of N(L)⊥; and, if {hp}p∈E is dense in H, then the functions
hp/‖hp‖, q ∈ E, constitute a dictionary of H.
The POAFD method is available for all Hilbert spaces that has a dictionary, regardless
whether the dictionary is from a reproducing kernel or not. In below we sometimes borrow
the notation Kq, q ∈ E, not assuming their reproducing property but only assuming
density of {Kq}q∈E. The normalized form Eq = Kq/‖Kq‖ is used only when involving the
so called boundary vanishing condition (BVC, see below).
Before we introduce the maximal selection principle of POAFD we need to introduce two
concepts: boundary vanishing condition (BVC) and multiple reproducing kernel. With
BVC we need to make some convention when E is an unbounded set in its underlying
space, say Rd+1. This will be the case when we discuss the Poisson and the heat kernels
in the following sections, in which E is the upper-half space of Rd+1. In the case we add
one more point, ∞, to the whole space Rd+1. We make ∞ to be a new boundary point of
E by modifying the topology of Rd+1 through introducing an open neighborhood system
of ∞ : A set O is said to be an open neighborhood of ∞ if and only if the complement of
O, Oc is a compact set of Rd+1. That is, we use the compactification of Rd+1 with respect
to the added point ∞. We denote by ∂∗E the set ∂E∪{∞}, which is the set of boundary
points of E in the new topological space Rd+1 ∪ {∞}, where ∂E is the set of all finite
boundary points of E. As a consequence, an open neighbourhood of ∂∗E is the union of
an open neighbourhood of the set ∂E and an open neighborhood of ∞. Since under the
one-point-compactification topology the space Rd+1 ∪ {∞} is compact, its closed subset
E ∪ ∂∗E is also compact.
If E is a bounded open set in Rd+1, such as when we discuss spherical Poisson kernel
approximation, then we do not have to do anything with the original topology. In such
case we are with the convention ∂∗E = ∂E. Boundary vanishing condition (BVC) in both
the bounded and unbounded E cases are stated as

Definition 2.2. Let H be a Hilbert space with a dictionary E = {Eq}q∈E. If for any f ∈ H
and any qk → ∂∗E, in the one-point-compactification topology if necessary, there holds

lim
k→∞

|〈f, Eqk
〉| = 0,

then we say that H together with E satisfy BVC.
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If H is a Hilbert space with a dictionary Eq, q ∈ E, satisfying BVC, then a compact
argument will lead to the conclusion for any f ∈ H that there exists a selection of q̃ ∈ E
such that

q̃ = arg sup{|〈f, Eq〉|2 : q ∈ E}.
We note that the Hilbert space H in the definition can be, with regards to the H-HK

model, two cases: H = H or H = HK . With the case H = H we refer to the dictio-
nary {hp/‖hp‖}p∈E, while in the second case H = HK we refer to the collection of the
normalized reproducing kernels Eq = Kq/‖Kq‖, q ∈ E.
Many RKHSs, including the classical Hardy spaces, Bergman and weighted Bergman
spaces, satisfy BVC. On the other hand, there exist RKHSs whose normalized reproducing
kernels constituting a dictionary that does not satisfy BVC ([QD1]).
Next we define multiple kernels. Let (q1, · · · , qn) be an n-tuple of parameters in E. The
set E may be a region in the complex plane, or one in Rd, or even in Cd. In the Rd case
let

K̃qn(p) =

[

(

∂

∂q~θ

)j(n)−1

Kq

]

q=qn

(p),(2.2)

where j(n) is the number of repeating times of the parameter qn in the n-tuple (q1, · · · , qn),
in the case ∂

∂q~θ
= ~θ·∇, being the directional derivative in the direction ~θ = (cos θ1, · · · , cos θd).

If E ⊂ Cd, the concept is similarly defined. For the case E ⊂ C the directional derivative is
simply replaced by eiθ ∂

∂z
.With such notation, if there is no repeating, that is qk 6= qn for all

k < n, then j(n) = 1, and K̃qn = Kqn . The kernel K̃qn(p) is called the multiple kernel asso-
ciated with the n-tuple (q1, · · · , qn). Associated with an infinite sequence (q1, · · · , qn, · · · ),
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In the POAFD algorithm we will use this for g = gn, being the n-th standard remainder

gn = f −
n−1
∑

k=1

〈f, Bk〉Bk.

In such way we consecutively extract out the maximal energy portion from the standard
remainders. At the step-by-step optimal selection category POAFD is, indeed, the greed-
iest optimization strategy, that is guaranteed by BVC and the concept multiple kernels.
The evolution of the idea and the exposition of POAFD can be found in the literature
[24, 23, 19, 17, 20, 5].

Remark 2.3. If H does not have a dictionary satisfying BVC then even with multiple
kernels one cannot perform POAFD. However, from the definition of supreme, for any
ρ ∈ (0, 1) and any mutually distinguished q1, · · · , qn−1, there exists qn different from the
preceding qk, k = 1, · · · , n− 1, such that

|〈g, Bqn
n 〉| ≥ ρ sup{〈g, Bq

n〉| : q ∈ E, q 6= q1, · · · , qn−1}.(2.5)

The algorithm for consecutively finding qn, n = 1, · · · , n, · · · , to satisfy (2.5) is called
Weak Pre-orthogonal adaptive Fourier decomposition (Weak-POAFD). Practically we of-
ten adopt the Weak-POAFD maximal principle, as, in the weak manner, we can at ev-
ery step select a parameter different from what have been chosen in the previous steps.
Theoretically, however, we are more interested in the case where existence of the exact
maximizers qn to (2.3) can be guaranteed. In the classical Hardy space case POAFD is
equivalent with AFD using TM systems. Indeed, it can be proved that TM systems are
not only orthonormal by themselves, but also are G-S orthonormalizations of the multiple
Szegö kernels of the context.

By using POAFD one can prove that the n-th standard remainder of a POAFD is domi-
nated by the magnitude M/

√
n if the expanded function f belongs to the space

HM = {f | f ∈ H, ∃ qk, dk such that f =
∞
∑

k=1

dkEqk
with

∞
∑

k=1

|dk| ≤M}

(see [19, 20]).
We remark that the above convergence rate estimation is promising as there is no smooth-
ness condition imposed to the expanded function. With concrete examples usually much
more rapid convergence are observed. As having in mind, the POAFD method is to
be promoted with the H-HK formulation in numerical solutions of integral and differ-
ential equations (see [15]). In the present paper we only explore its impact with spars
representation of the Dirac-δ distribution ([28]).

3. Sparse Approximation of the Convolution Type

3.1. Sparse Poisson Kernel Approximation. It is well known that Poisson integrals
approximate the boundary data function. In this section we will develop sparse approxi-
mation by linear combinations of parameterized Poisson kernels.
The Poisson kernel context fits well with the H-HK formulation. We let H = L2(Rd). Set

E = {p ∈ Rd+1
+ | p = t+ x, t > 0, x = (x1, · · ·xd)}.
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For p = t+ x, let

hp(y) = Pt+x(y) , cd
t

|p− y|d+1
= cd

t

(t2 + |x− y|2) d+1
2

, d ≥ 1,

where cd = Γ[(d+1)/2]

π(d+1)/2 . We note that hp(y) is the evaluation at the point x − y of the L1-

t-dilation of the function φ(x) = cd
1

(1+|x|2)(d+1)/2 , where cd is the normalization constant

under which the integral of φ over Rd is identical with 1. In below when we discuss
the Poisson kernel on the unit sphere and the heat kernel in Rd we use cd for the same
normalization purpose, whose values then vary from context to context.
The operator L and its images Lf, f ∈ L2(Rd), are given by

u(t+ x) = Lf(t+ x) = 〈f, ht+x〉L2(Rd).

In the H-HK formulation the range R(L) consists of the Poisson integrals of the boundary
data f ∈ L2(Rd). Now we show that {hp}p∈E is dense. It suffices to show that if f ∈
L2(Rd) and 〈f, hp〉 = 0 for all p, then f = 0. It is a result of harmonic analysis that, in
both the L2(Rd)-norm and pointwise sense,

lim
t→0+

u(t+ x) = lim
t→0+

〈f, hp〉 = f(x) = 0, a.e.

In the H-HK formulation we have N(L) = {0} and N(L)⊥ = L2(Rd). On the other hand
R(L) = HK is, under the mapping L, isometric with N(L)⊥ = L2(Rd). In particular,
L(hq) = Kq. Density of Kq in HK implies density of hp in H = L2(Rd).
Harmonic analysis knowledge has given a characterization of the space HK . In fact, HK

coincides, together with its norm, with the harmonic Hardy space on the upper-half space
Rd+1

+ :

h2(Rd+1
+ ) = {u : Rd+1

+ → R : △
R

d+1
+
u = 0, ‖u‖2

h2(Rd+1
+ )

= sup
t>0

∫

Rd

|u(t+ x)|2dx <∞}.

By denoting f(x) = u(0 + x), we have

‖u‖2HK

H-HK= ‖f‖2L2(Rd)

N2 ‖t
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variable t + x, has the boundary limit function Pt1+x1
(·). Therefore, these two harmonic

functions have to be the same.
The above deduction also concludes the relation

〈Pt1+x1
, Pt+x〉L2(Rd) = P(t1+t)+(x1−x)(0),

regarded as the semigroup property of the Poisson kernel. The reproducing property of
Kq is an immediate consequence of the H-HK formulation: For u ∈ HK , q = t1 + x1,

〈u,Kq〉HK
= 〈u(0 + ·), Pt1+x1

(·)〉L2(Rd) = u(t1 + x1).

For a general Kq, q = t + x, t > 0, its norm is computed, from the semi-group property
(3.6),

‖Kq‖2HK
= 〈Kq, Kq〉HK

= K(q, q) = P2t(0) =
cd

(2t)d
.

The norm-one normalization of Kq is thus

Eq =
Kq

‖Kq‖
=

(

(2t)d

cd

)1/2

Kq.

Next we verify that BVC holds in this Poisson context, i.e.,

lim
q→∂E

|〈u,Eq〉HK
| = 0,(3.7)

where u is any function in HK = h2(Rd+1
+ ).We first have, by using the reproducing kernel

property, for q = t + x,

〈u,Eq〉HK
= c′dt

d/2u(t+ x).(3.8)

Due to density of the parameterized Poisson kernels in HK , the verification of BVC is
reduced to verifying (3.7) for each parameterized reproducing kernel u(p) = Kt1+x1

. From
(3.8) we have

〈Kt1+x1
, Eq〉HK

= cdt
d/2P(t1+t)+x1

(x) = c′dt
d/2 t+ t1

[(t+ t1)2 + |x− x1|2](d+1)/2
.(3.9)

The limiting process q → ∂∗Rd+1
+ , based on the one-point-compactification topology,

amounts to, alternatively, t → 0 or t2 + x2 → ∞. For any fixed x1 and t1 > 0, regardless
the positions of x, we have

td/2
t+ t1

[(t + t1)2 + |x− x1|2](d+1)/2
≤ td/2

1

(t+ t1)d
→ 0,

as t→ 0 (d ≥ 1). So, uniformly in x, as t→ 0, the quantity in (3.9) tends to zero.

Let, for the fixed t1 and x1, R =
√

t2 + |x|2 > 4|x1| + 2t1 + 1. We divide the argument
into the two cases: (1) 0 < t < R/2; and (2) t ≥ R/2. In case (1), |x| > R/2 and hence
(|x− x1|)2 ≥ (|x|/4)2. Hence, by ignoring the constant,

(t)d/2
t+ t1

[(t+ t1)2 + |x− x1|2](d+1)/2
≤ (R/2)d/2

R/2 + R/2

[(t+ t1)2 + |x/4|)2](d+1)/2
≤ cd
Rd/2

→ 0,

as R → ∞ (d ≥ 1).
In case (2), t ≥ R/2 implies

td/2
t+ t1

[(t+ t1)2 + |x− x1|2](d+1)/2
≤ td/2

1

(t + t1)n
≤ c′′′d
Rd/2

→ 0,
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In case (2) we have t ≥ R/2. Through a brutal estimation based on (3.18) we have

(8πt)d/4h(t+s)+x(y) ≤ C

(

1

t+ s

)d/4

≤ C
1

Rd/4
→ 0,
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