SPARSE APPROXIMATION TO THE DIRAC- δ DISTRIBUTION

WEI QU, TAO QIAN*, AND GUAN-TIE DENG

Abstract

The Dirac- δ distribution may be realized through sequences of convlutions, the latter being also regarded as approximation to the identity. The present study proposes the so called pre-orthogonal adaptive Fourier decomposition (POAFD) method to realize fast approximation to the identity. The type of sparse representation method has potential applications in signal and image analysis, as well as in system identification.

INTRODUCTION

) $L f) p)\left\langle f, h_{p}\right\rangle_{\mathrm{H}}$.

$$
N \text { |) } \quad\{f \in \mathcal{H} \mid L f)
$$

 A

$$
\|F\|_{H_{K}} \triangleq\|P f\|_{\mathrm{H}} .
$$

 4. $\operatorname{mon}_{\mathrm{pan}} \mathrm{L}$. n no on n on $K p, q$ at

$$
K q, p) \quad\left\langle h_{q}, h_{p}\right\rangle_{\boldsymbol{H}}
$$

 on or AFD r §) r) n r on o o at p

 or on on r on r on r or r or

 $\left.0^{14} \sim 4\right)^{4}$

 $0 \mathrm{n} \quad \mathrm{r}$

 $\mathrm{p}^{14} \mathrm{r}$ rn $\mathrm{AFD} \mathrm{R}^{d}$.

POAFD in Hilbert Space with a Dictionary

rpr n on o
$\begin{array}{llllllllllll}\mathrm{or} \\ \mathrm{p} & \square \square \square \square \square & \square\end{array}$

 $\left\{K_{q}\right\}_{q \in \mathrm{E}} \not{ }^{\boldsymbol{l}} \mathrm{n} \quad \mathrm{n} H_{K}$.

Definition n 2.1. A subset \mathcal{E} of a general Hilbert space H is said to be on r if $\|E\| \quad$ for $E \in \mathcal{E}$, and $\overline{\mathrm{p} \mathrm{n}}\{E \quad E \in \mathcal{E}\} \quad H$.

 $h_{p} /\left\|h_{p}\right\|, q \in \mathrm{E}$, on \quad on r o \mathcal{H}.

al n o $\left\{K_{q}\right\}_{q \in \mathrm{E}}$. nor an or $E_{q} K_{q} /\left\|K_{q}\right\|$ an on

 p
 En
 O, O^{c} ○第 O R^{d+1}. is o ono R^{d+1} is r
 po of n n

 $\mathrm{E} \cup \partial^{*} \mathrm{E} \quad$ о о鸡

Definition 2.2. Let H be a Hilbert space with a dictionary $\mathcal{E} \quad\left\{E_{q}\right\}_{q \in \boldsymbol{E}}$. If for any $f \in \mathcal{H}$ and any $q_{k} \rightarrow \partial^{*} \mathrm{E}$, in the one-point-compactification topology if necessary, there holds

$$
\underset{k \rightarrow \infty}{\min ^{2}\left|\left\langle f, E_{q}\right\rangle\right|, ~}
$$

then we say that H together with \mathcal{E} satisfy BVC.

$$
\ddot{q} \quad \mathrm{r} \quad \mathrm{p}\left\{\left|\left\langle f, E_{q}\right\rangle\right|^{2} \quad q \in \mathrm{E}\right\} .
$$

 nor an r pad $\mathrm{n} \quad E_{q} \quad K_{q} /\left\|K_{q}\right\|, q \in \mathrm{E}$.

$$
n \text { AFD or }
$$

$$
\begin{aligned}
& \text { or } g \quad g_{n} \quad \mathrm{n} \text { an } n \text { an an } \mathrm{r} \text { 正 } \mathrm{r} \\
& g_{n} \quad f-\sum_{k=1}^{n-1}\left\langle f, B_{k}\right\rangle B_{k} .
\end{aligned}
$$

 $r n$ on n no poor $\begin{aligned} & \\ & \text { ra } r\end{aligned}$
 $\mathrm{pr} \mathrm{n} q_{k}, k \quad, \cdots, n-$, \&

$$
\left|\left\langle g, B_{n}^{q_{n}}\right\rangle\right| \geq \rho \quad \mathrm{p}\left\{\left\langle g, B_{n}^{q}\right\rangle \mid \quad q \in \mathrm{E}, q / q_{1}, \cdots, q_{n-1}\right\} .
$$

4. or 4. 5 or on
$\mathrm{n} q_{n}, n \quad, \cdots, n, \cdots, \quad$ o
Weak Pre-orthogonal adaptive Fourier decomposition AFD) r o

$$
H^{M} \quad\left\{f \mid f \in H, \exists q_{k}, d_{k} \quad \text { s. s. } f \quad \sum_{k=1}^{\infty} d_{k} E_{q} \quad \text { s. } \sum_{k=1}^{\infty}\left|d_{k}\right| \leq M\right\}
$$

Sparse Approximation of the Convolution Type

Sparse Poisson Kernel Approximation.

For $p \quad t \quad \underline{x}$,

$$
\left.\left.h_{p} \underline{y}\right) \quad P_{t+\underline{x}} \underline{y}\right) \triangleq c_{d} \frac{t}{|p-\underline{y}|^{d+1}} \quad c_{d} \frac{t}{t^{2}\left(\underline{x}-\left.\underline{y}\right|^{2}\right)^{\frac{+1}{2}}}, \quad d \geq
$$

us op or $L f, f \in L^{2} \mathrm{R}^{d}$), r

$$
\left.u t_{+}^{\underline{x})} \quad L f t_{+}^{\underline{x}}\right) \quad\left\langle f, h_{t+\underline{x}}\right\rangle_{L^{2}(\mathbf{R})} .
$$

$$
\left.\left.h^{2} \mathbf{R}_{+}^{d+1}\right)\left.\quad\left\{u \quad \mathbf{R}_{+}^{d+1} \rightarrow \mathbf{R} \quad \triangle_{\mathbf{R}_{+}^{+1}} u \quad,\|u\|_{h^{2}\left(\mathbf{R}_{+}^{+1}\right)}^{2} \quad \underset{t>0}{ } \int_{\mathbf{R}} \mid u t \quad \underline{x}\right)\right|^{2} d \underline{x}<\infty\right\}
$$

Bat no $\mathrm{n} \quad f \underline{x}) \quad u \quad \underline{x}), \quad$ us

$$
\|u\|_{H_{K}}^{2}{ }^{\mathrm{H} H_{K}}\|f\|_{L^{2}(\mathbf{R})}^{2}{ }^{N}
$$

4. O al on O on at r on

$$
\left.\left\langle P_{t_{1}+\underline{x}_{1}}, P_{t+\underline{x}}\right\rangle_{L^{2}(\mathbf{R})} \quad P_{\left(t_{1}+t\right)+\left(\underline{x}_{1}-\underline{x}\right)}\right),
$$

 $K_{q} \mathrm{n}$ on q n o $\mathcal{H} H_{K}$ or on For $u \in H_{K}, q$ t. $t_{1} \underline{x}_{1}$,

$$
\left.\left.\left.\left.\left\langle u, K_{q}\right\rangle_{H_{K}} \quad\langle u \quad \dot{-}), P_{t_{1}+\underline{x}_{1}} .\right)\right\rangle\right\rangle_{L^{2}(\mathbf{R})} \quad u t_{1} \quad \underline{x}_{1}\right) .
$$

$$
\left.\left.\left\|K_{q}\right\|_{H_{K}}^{2} \quad\left\langle K_{q}, K_{q}\right\rangle_{H_{K}} \quad K q, q\right) \quad P_{2 t}\right) \quad \frac{c_{d}}{t)^{d}}
$$

$$
E_{q} \quad \frac{K_{q}}{\left\|K_{q}\right\|} \quad\left(\frac{t)^{d}}{c_{d}}\right)^{1 / 2} K_{q}
$$

$$
\sum_{q \rightarrow \partial \mathbf{E}}^{\sum}\left|\left\langle u, E_{q}\right\rangle_{H_{K}}\right|
$$

 prop r or $q \quad t_{+}^{\underline{x}}$,

$$
\left.\left\langle u, E_{q}\right\rangle_{H_{K}} \quad c_{d}^{\prime} t^{d / 2} u t \quad \underline{x}\right)
$$

$$
\left.\left\langle K_{t_{1}+\underline{x}_{1}}, E_{q}\right\rangle_{H_{K}} \quad c_{d} t^{d / 2} P_{\left(t_{1}+t\right)+\underline{x}_{1}} \underline{x}\right) \quad c_{d} t^{d / 2} \frac{t}{\left.t t_{1}\right)^{2}}\left|\underline{\bar{x}}-\underline{x}_{1}\right|^{2(d+1) / 2} .
$$

 14. po on o \underline{x},

$$
t^{d / 2} \frac{t t_{1}}{\left.t \quad t_{1}\right)^{2} \quad\left|\underline{x}-\underline{x}_{1}\right|^{2(d+1) / 2}} \leq t^{d / 2} \frac{}{\left.t \quad t_{1}\right)^{d}} \rightarrow
$$

$\left.\left.\underline{x}-\underline{x}_{1} \mid\right)^{2} \geq|\underline{x}| /\right)^{2} . \quad$ n $\longleftarrow \quad$ nor $n \quad$ on n
$\left.t)^{d / 2} \frac{t t_{1}}{\left.t t_{1}\right)^{2}} \underset{+\underline{\bar{x}}-\left.\underline{x}_{1}\right|^{2(d+1) / 2}}{ } \leq R /\right)^{d / 2} \frac{R /}{\left.\left.t t_{1}\right)^{2} \underset{+}{\mid \underline{x}} / \mid\right)^{2(d+1) / 2}} \leq \frac{c_{d}}{R^{d / 2}} \rightarrow$,

$$
t \geq R /
$$

$$
t^{d / 2} \frac{t t_{1}}{\left.t t_{1}\right)^{2}{ }_{+}^{\mid \underline{x}}-\left.\underline{x}_{1}\right|^{2(d+1) / 2}} \leq t^{d / 2} \frac{t_{+}^{\prime \prime}}{\left.t t_{1}\right)^{n}} \leq \frac{c_{d}}{R^{d / 2}} \rightarrow
$$

 pro ald

Sparse Heat (Gaussian) Kernel Approximation. no n se n $r n$ or
) $\left.L f t_{+}^{\underline{x})} \frac{}{\pi t)^{d / 2}} \int_{\mathbf{R}} f \underline{y}\right) e^{-\frac{(x-1}{4 t}} d \underline{y}, \quad n \geq$,

$$
\left.\left.\left.\frac{\partial u}{\partial t} \quad \Delta u, \quad{ }^{+} \quad \underline{x}\right) \quad f \underline{x}\right), \quad f \in L^{2} \mathbf{R}^{d}\right),
$$

 $\left.\mathcal{H} \quad L^{2} \mathrm{R}^{d}\right), q \quad t_{+}{ }_{+} \underline{x} \in \mathrm{E} \quad \mathrm{R}_{+}^{d+1}$,

$$
\left.h_{q} \underline{y}\right) \quad \frac{}{\pi t)^{d / 2}} e^{-\frac{\mid \underline{x}-1}{4 t}} .
$$

 $\left.\left.\underset{\substack{\text { min } \\ u}}{\boldsymbol{m}_{t}}+f \underline{x}\right), \quad f \in L^{2} \mathbf{R}^{d}\right)$,

 $\overline{\left.\pi)^{d} t s\right)^{d / 2}} \int_{\mathbf{R}} e^{\frac{-|x-|^{2}}{4 t}} e^{\frac{-1--\left.\right|^{2}}{4 s}} d \xi$.

$$
\left.\left.\frac{\left.\pi)^{d} t s\right)^{d / 2}}{\int_{\mathbf{R}}} e^{\frac{-\left|\underline{x}-I^{2}\right|^{2}}{4 t}} e^{\frac{-\mid \underline{-\mid}-J^{2}}{4 s}} d \xi \quad \frac{}{\pi t} s\right)\right)^{d / 2} e^{\frac{-\left|x-| |^{2}\right.}{4(t+s)}},
$$

a) ${ }^{4} \mathrm{r}$ or

$$
\mathrm{n} \quad \circ \square
$$

$\left.\left.\left.K q, p) \quad h_{(t+s)+\underline{x}} \underline{y}\right) \quad h_{(t+s)+\underline{y}} \underline{x}\right) \quad h_{(t+s)+(\underline{x}-\underline{y})}\right)$.

14. r on

$$
\left.\left\langle h_{t+\underline{x}}, h_{s+\underline{y}}\right\rangle_{L^{2}(\mathbf{R})} \quad P_{(t+s)+(\underline{x}-\underline{y})}\right),
$$

 nor登 O rn K_{q} o a

$$
\left.\left\|K_{q}\right\|_{H_{K}}^{2} \quad\left\langle K_{q}, K_{q}\right\rangle_{H_{K}} \quad h_{2 t+\underline{0}}-\right) \quad \quad \begin{aligned}
& \pi t)^{d / 2}
\end{aligned}
$$

$$
\left.\left.\left.E_{q} p\right) \quad \pi t\right)^{d / 4} h_{(t+s)+\underline{x}} \underline{y}\right) \quad \frac{\pi t)^{d / 4}}{\pi t \quad s))^{d / 2}} e^{-\frac{|\underline{x}-|^{2}}{4(t+s)}}
$$

$\lambda^{\prime} \quad \mathrm{r} \quad \mathrm{O}^{40} \mathrm{O} \quad \mathrm{B}: \% \mathrm{C}$

$$
\mathbf{R}_{+}^{+1} \ni q \rightarrow \partial^{*} \mathbf{R}_{+}^{+1} \min ^{2} \mid\langle
$$

$$
\begin{aligned}
& \left.\pi t)^{d / 4} h_{(t+s)+\underline{x}} \underline{y}\right) \leq C\left(\frac{}{t \quad s}\right)^{d / 4} \leq C \overline{R^{d / 4}} \rightarrow \quad, \quad R \rightarrow \infty . \\
& \text { C } 14
\end{aligned}
$$

Poisson Kernel Sparse Approximation on Spheres

$$
\left.\left.h_{q} s\right) \quad P_{q} s\right) \quad c_{d} \frac{-r^{2}}{|q-s|^{d}}
$$

up or or $L f, f \in L^{2} \mathrm{~S}^{d-1}$), r

$$
u q) \quad L f q) \quad\left\langle f, h_{q}\right\rangle_{L^{2}\left(\mathbf{S}^{-1}\right)}
$$

(4. r mn r pol o $L^{2} \mathrm{~S}^{d-1}$)

$$
\left.\left.\left.\langle f, g\rangle_{L^{2}\left(\mathbf{S}^{-1}\right)} \quad \int_{\mathbf{S}-1} f s\right) g s\right) d \sigma s\right)
$$

$$
\|u\|_{H_{K}} \triangleq\|f\|_{L^{2}\left(\mathbf{S}^{-1}\right)}
$$

no n no al

$$
\left.\underset{r \rightarrow 1}{\operatorname{sen}_{4}}(r t) \quad f t\right)
$$

$$
\begin{aligned}
& \mathrm{o} \\
& \\
& \|u\|_{H_{K}}^{2} \mathrm{H}
\end{aligned}
$$

 $\triangle_{p} \quad \frac{\partial^{2}}{\partial \rho^{2}}+\frac{d-}{\rho} \frac{\partial}{\partial \rho}+\overline{\rho^{2}} \triangle_{\mathbf{S}^{-1}}$,

n on $\mathrm{p}^{4} \mathrm{r}$

$$
\left.\left.\left.\triangle_{p} P_{r \rho s} t\right)\right) r^{2}\left(\frac{\partial^{2}}{\partial r \rho)^{2}}+\frac{-}{r \rho)} \frac{\partial}{\partial r \rho)}+\frac{r^{2}}{r \rho)^{2}} \triangle_{\mathbf{S}^{-1}}\right) P_{(r \rho) s} t\right)
$$

 prop $\mathrm{r} \quad$ o $K_{q} \quad$ о ${ }^{\text {a }}$ For $\left.u \in H_{K} \quad n^{2} \mathrm{~S}^{d-1}\right), q \quad r t$,

$$
\left.\left.\left.\left.\left\langle u, K_{q}\right\rangle_{H_{K}} \quad\langle u \cdot), P_{r t} \cdot\right)\right\rangle_{L^{2}\left(\mathbf{S}^{-1}\right)} \quad u r t\right) \quad u q\right) .
$$

 $\mathrm{nr} K_{w}, w \quad \rho s, s \in \mathrm{~S}^{d-1},<\rho<$, nor

$$
\left.\left.\left\|K_{w}\right\|_{H_{K}}^{2} \quad\left\langle K_{w}, K_{w}\right\rangle_{H_{K}} \quad K w, w\right) \quad P_{\rho^{2} s} s\right) \quad \frac{c_{d}}{\left.-\bar{\rho}^{2}\right)^{d-1}} .
$$

nor on o K_{q} no

$$
E_{w} \quad \frac{K_{w}}{\left\|K_{w}\right\|} \quad \frac{\left.-\rho^{2}\right)^{(d-1) / 2}}{\sqrt{\left.c_{d} \quad \rho^{2}\right)}} K_{w} .
$$

$\begin{array}{ll}\mathrm{r} & \mathrm{r} \quad \text { or } w \quad \rho s, s \in \mathrm{~S}^{d-1} \text {, }\end{array}$

$$
\left.\left\langle u, E_{w}\right\rangle_{H_{K}} \frac{\left.-\rho^{2}\right)^{(d-1) / 2}}{\sqrt{\left.c_{d} \rho^{2}\right)}} u w\right) .
$$

 E_{w} q) $\left.\left\langle K_{q}, E_{w}\right\rangle_{H_{K}} \quad \frac{\left.-\rho^{2}\right\rangle^{(d-1) / 2}}{\sqrt{\left.c_{d} \rho^{2}\right)}} P_{r \rho t} s\right)$.

Remark 4.1. A AFD ppro on

$$
\left\|u-\sum_{k=1}^{N} c_{k} P_{q}\right\|_{h^{2}(\mathbf{B})} \leq \frac{M}{\sqrt{N}} .
$$

$$
\left.\| f \cdot)-\sum_{k=1}^{N} c_{k} P_{q} \cdot\right) \|_{L^{2}\left(\mathbf{S}^{-1}\right)} \leq \frac{M}{\sqrt{N}} .
$$

EXPERIMENTS

 $\mathrm{n} \phi_{j}$ о $\theta_{j}, \mathrm{n} \phi_{j} \mathrm{n} \theta_{j}$, o $\left.\left.\phi_{j}\right), \phi_{j} \in, \pi, \theta_{j} \in, \pi\right)$,

$$
\left.\left.\left.\left.\phi_{1}, \phi_{2}, \phi_{3}\right) \quad \pi /, \pi /, \quad \pi /\right), \theta_{1}, \theta_{2}, \theta_{3}\right) \quad \pi /, \pi /, \pi /\right)
$$

$$
f q) \quad \sum_{j=1}^{3} c_{j} \frac{-\rho_{j}^{2}}{\sqrt{\rho_{j}^{2}}} \frac{\left.-r \rho_{j}\right)^{2}}{\left|r \rho_{j} \underline{s}_{j}-\underline{t}\right|^{3}},
$$

$\mathrm{n} \alpha_{j}$ о $\beta_{j}, \mathrm{n} \alpha \mathrm{n} \beta_{j}$, o $\left.\left.\alpha_{j}\right), \alpha_{j} \in, \pi, \beta_{j} \in, \pi\right), j \quad, \cdots$, ,
$h_{1}, h_{2}, h_{3}, h_{4}, h_{5}, h_{6}, h_{7}, h_{8}$. , . . , , . .), $\left.\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}, \alpha_{5}, \alpha_{6}, \alpha_{7}, \alpha_{8}\right)$
a $\beta_{1}, \beta_{2}, \beta_{3}, \beta_{4}, \beta_{5}, \beta_{6}, \beta_{7}, \beta_{8}$)

References

[1] D. Alpay, F. Colombo, T. Qian, I. Sabadini, Adaptive orthonormal systems for matrix-valued functions, Proceedings of the American Mathematical Society, 2017, 145(5)2089C2106.
[2] D. Alpay, F. Colombo, T. Qian, and I. Sabadini, Adaptative Decomposition: The Case of the DruryArveson Space, Journal of Fourier Analysis and Applications, 2017, 23(6): 1426-1444.
[3] L. Baratchart, Existence and generic properties of L^{2} approximations for linear systems,
[27] G. Ruckebusch, Sur l'approximation rationnelle des filtres, Report No 35 CMA Ecole Polytechnique, 1978.
[28] E. Stein, G. Weiss, Introduction to Fourier Analysis in Euclidean Spaces, Princeton University Press, 1970.
[29] S. Saitoh, Y. Sawano, Theory of Reproducing Kernels and Applications, Singapore: Springer, 2016.
[30] S. Saitoh, Theory of Reproducing Kernels and its Applications, Pitman Research Notes in Mathematics Series, vol. 189 (Longman Scientific and Technical, Harlow, 1988).
[31] V. Temlyakov, Greedy Approximation, Cambridge Monographs an Applied and Computational Mathematics, 2011.
[32] J. L. Walsh, Interpolation and approximation by rational functions in the complex domain, American Mathematical Soc. Publication, 1962.
[33] X. Y. Wang, T. Qian, I. T. Leong, Y. Gao, Two-Dimensional Frequency-Domain System Identification, IEEE Transactions on Automatic Control, 2019, DOI: 10.1109/TAC.2019.2913047.
(WQ)School of Mathematical Sciences, Beijing Normal University, China
E-mail address: quwei bnu edu cn
(TQ)Macau Center for Mathematical Sciences, Macau University of Science and Technology, Macau
E-mail address: tqian ust edu o
(GTD)School of Mathematical Sciences, Beijing Normal University, China
E-mail address: bnu edu cn

