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1. INTRODUCTION TO THE H-Hyx FORMULATION, THE BASIC PROBLEMS, AND BASIS
SOLUTIONS

In a Hilbert space if the point-evaluation functional of any point is given by the inner
product of the function with a function parameterized by the point, then we say that
the Hilbert space is a reproducing kernel Hilbert space (RKHS), and the parameterized
function is the (unique) reproducing kernel of the RKHS. We will start with a formulation
of a linear operator in a general Hilbert space, and lead to a RKHS structure in the range
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space of the operator. This formulation may be found in a number of sources, and for
instance, in [21]. The general Hilbert space is denoted H with inner product (-;-)%;
and the linear operator is formulated with the inner product in the form of the Riesz
representation Theorem, as follows. Let E be an abstract set, usually with a topology. In
our context E is usually an open set of an Euclidean space, or an open set of a domain
of one or several complex variables, where the elements of E are treated as parameters.
Associated with each p € E there is an element h, € H: A linear operator L : H — CF



is evidenced by the fact that for all = € N(L) the relation

0=L(F")(p) = (" hy)n
holds. Now for F € Hg; Py f = 5, Lf* = F;q € E; with the relation K,(p) =
(hg; hp)a = L(hg)(p), we have

<F; KQ>HK =

[
=
-
4 =
=3

= F(q);

reproducing the value of the function F at q € E: In the sequel we will call the above
formulation as H-Hg formulation, and Hg the ag a8 a "o —e.q e

This formulation is as if customized especially for the the complex Hardy spaces: a space
having very fundamental impact to harmonic analysis, complex analysis, as well as to
signal analysis. But it is not: the formulation is a very general and suitable for all integral,
ordinary and partial differential operators defined in their respective Hilbert spaces (see
[21]) in the form of the Riesz representation Theorem. Below we explain how the complex
Hardy space of the unit disc is precisely an example for the H-Hy formulation. In the
case H = L%(@D); where D denotes the complex unit disc and @D means the boundary
of D; i.e., the unit circle. L?(@D) is facilitated with the inner product

<f L2 oD) 2 / f Zt

under which L?(@D) is a Hilbert space but itself is not a RKHS. In the case E = D: For
peD;
hy(e) = — -
P21 — peit
The function h,, is the Szego kernel of the context being the Cauchy kernel in the circle arc
length measure. Naturally, for f € L*(@D); F(p) = (f;h,) 2(sp) is the Cauchy integral
of the boundary data f over the unit circle. The range space Hy is identical with the
complex Hardy space H?(D) :

c L*(@D):

P21
H?(D) = {F : D — C | F is holomorphic and ||F||H2 D) = os<1il<)1 i IF (re™)|> < 0}:
A functions F(z) being in this gpace is equivalent with the condition that F(z) has the
Taylor series expansion F (z) = <7~ ¢,z" with =7 [cx|? < co: In both the set theoretic
and the Hilbert space inner profjlct and norm sense H?(D) = Hy; where functions F in
Hx is equipped with the norm <7 |cx|*: We note that the reproducing kernel of H?(D)

is, according to the Cauchy formula,
1
K(a;p) = Kq(p) = (hg; hyp)y = 1_—qp3

The reproducing function of K, for F € Hx may be verified through
<F; Kq>HK = <f+; hq>7-l = (f; hq>7—l = F(q):
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what we call as basis method. The basis method as a methodology has existed in the
literature. We include here a unified and concise formulation.

In the H-Hg formulation Hg is a RKHS, while the span of the kernel functions K,; q € E;
is a dense subset of Hg: The last assertion follows from the reproducing property of the
kernels. If the parameter set E is an open set, and the mapping from E to the set
{K, | g € E} is continuous in the topology of ; then some countable subset {K,, | 0, €
E;n =1;2;---}; can constitute a complete system of Hy: As a consequence, Hy contains
an orthonormal basis By; Bg; - - ; that is the Gram-Schmidt (G-S) orthonormalization of
the collection {K,, | g, € E;n=1;2;---}; where

Z Zn L (Eq,; BBy
\ )
1 —L” (B, ;B2

where E, = W denotes the normalization of K;;q € E: We note that in the basis
K

formulation the parameters g,;n = 1;---;n;---; are all distinguished to each other.
Accordingly, we have
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This result shows that since we know L*1Kq = h,; with the transfer matrix A we can
get L™1B;, computed.

Next, we solve the Moore-Penrose pseudo-inverse problem (iii). The basic assumption is
that the space Hg is contained in a Hilbert space H as a closed subspace. Let F be the
given function in . The strategy is to expand the projection G = Pu,(F) in Hg; and
then expand G into a B-series. Noticing that F — G is perpendicular with K ; we have

<F; Kq)ﬂ = <G; Kq>7ft = <G; Kq>HK = G(Q>:

Then with
G=>» (G;B))u,Bi;
=1
we have
(1.8) L7'G =) ((FiK(3)q:Ba, L 'Be

k=1
In the matrix notation the above is
LG = {(Fi K sd L€ = {(FiKy) i} s A T

where {(F;K{})z}5 is the row matrix consisting of ((F;K})7Bi)m.;l = 1,2, By
using the notations S;; Sy and S; for the solutions of the problems (i), (ii) and (iii), from
(1.5), (1.7) and (1.8), we have

Theorem 1.1. T o usms o PVQU % (), () 0y, (455) ak.k’.’»;‘zlgg{_ L8 geby

‘ (]
(1.9) i P S ZFgB; :
(1.10) Sy =FgA™'T;
a”}",b
(1.11) Ss = {(FKy) s A~ T

Remark 1.2. The above Problem (iii) is under the assumption that Hg is a subspace
of # that, as a matter of fact, makes a solution straightforward. The example for this
is the imbedding of the L2-Bergman space in a complex region into the L2-space in
the same region. The more general cases, that is not discussed in the resent paper,
include Hg being a set-theoretic subset of # with a non-isometric imbedding operator
I [[1(F)|l; < |[F]|are: Such case is, in fact, equivalent in our setting with L : Hg — H;

where L is, in general, a bounded linear operator. Examples for this general cases include,
for instance, the imbedding of a Sobolev space into another Sobolev space.

We note that the obtained solution formulas are dependent of the basis systems &; B;
the transfer matrix A: They involve complicated computations. The POAFD algorithm
proposed in §2 is more efficient in computation involving only a limited number of matrices
of finite orders for accepted errors.

The rest of the paper introduces a non-basis method, called pre-orthogonal adaptive
Fourier decomposition (POAFD). The POAFD method, having been used in signal and
image analysis, and in system identification, would be, according to the author’s knowl-
edge, for the first time introduced to numerical solutions of ODEs, PDEs and integral
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equations. §2 is devoted to the POAFD theory itself. In §3 we solve the three types prob-
lems by POAFD. The most recent studies show that concrete examples to get numerical
solutions using POAFD are all very interesting and significant. As a unified method it is
useful whenever the canonical range space Hg is well characterized, or a general kernel K,
is identified. On the other hand, the method itself is helpful to characterize the canonical
range space. In the present study we only present the principle of the proposed methods.

2. POAFD: A NoN-BASIS METHOD FOR SPARSE REPRESENTATION
Let Hg be the RKHS with kernel function K(p;q) = K,(p) = (h,; h,)% as in the H-Hg

formulation. The normalized kernels E, = K =||K,||n,:q € E; constitute a dictionary.
Below we will describe the pre-orthogonal adaptive Fourier decomposition (POAFD) algo-
rithm that is available in all Hilbert spaces with a dictionary. Methodology-wise, POAFD
belongs to the matching pursuit (or greedy algorithm) type of sparse representations
([13, 12]). It, however, did not belong to any existing matching pursuit method until
it was proposed in [16]. It adopts the idea of Adaptive Fourier Decomposition (AFD)
implemented to signals in the classical Hardy spaces. The predecessor AFD was initial-
ized for positive frequency representations of analytic signals, whose algorithm involve
the generalized backward shift operator and knowledge of classical Takenaka-Malmquist
(TM) system generalizing the Fourier system. It well fits into the frame work of the
Beurling-Lax Theorem ([18]) and, owing to which, has delicate and deep connections
with complex analysis theory, and especially Mdbius transform and Blaschke products.
POAFD may be said to be AFD in Hilbert spaces, enhancing delicate analysis due to the
fact that it reduces to AFD when underlying Hilbert spaces are replaced by the classical
Hardy spaces of one and multiple variables. The AFD algorithm automatically involves
multiple parameters (multiple zeros of Blaschke products). Which, in POAFD, corre-
sponds to repeating selections of multiple kernels labelled by the same parameters in the
Gram-Schmidt orthogonalization process, when necessary for the optimization principle.
In theoretical development, like in AFD in term of the TM system involving Blaschke
products, repeating selections of parameters corresponding to multiple kernels of different
levels cannot be avoided. The POAFD maximal selection principle evidences that it is
indeed the most effective matching pursuit process. Below we introduce POAFD. To sim-
plify the notation we in the present section borrow the notation {K,},cg as a collection
of functions whose span is dense in the underlying Hilbert space, and use Hy for such
a Hilbert space. We will not invoke the reproducing kernel property in this section. To
be able to deal with multiple kernels we assume that each K,;q € E; have all orders of
derivatives with respect to q:

For the simplicity, let E be an open set in the complex plane. Let {Q; - ;0 -+ ;} be
an infinite sequence of parameters in E: Denote

) (I(n)—1)
SO

where I(n) is the number of repeating of the parameter g, in the n-tuple {qi;--- ;0,}:

With a little abuse of the notation, we will also denote the just defined kernel function K,
as K, ;n=1;2;---; named the "y 4., % E,’ ¢ associated with the parameter sequence

(Gn);

in use. The concept multiple kernel/is 4 ndessity of the pre-orthogonal maximal selection
principle: Suppose we already have an (n—1)-tuple {qy; - - - ;0g—1) }; with repetition or not,
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corresponding to the (N—1)-tuple {qu; SRR anfl}: By doing the G-S orthonormalization
process consecutively we obtain an equivalent (N — 1)-orthonormal basis {By;--- ;B,_1}:
We wish to find a @,, that gives rise to a value being equal

sup{|[(Gn; BI)| : 4 €E;q# Qs - i Un1}

where G,, is the standard remainder

3
|

1
G,=F - ) (F.By)By;
ki
and the finiteness of the supreme is guaranteed by the Cauchy-Schwartz 1nequahty7 and B4

be such that {By;--- ;B,_1; B2} is the G-S orthonormalization of {Ky,; -
given by

Qn l’ q}

K, — 2"} Ky By i By
1K lI2 — 27 (K By 2

(2.12) BY = \/

In many cases, however, it happens that the space satisfies the so called Beu,, a';'—
Va&.&(s]‘.;y C'g!%&'_}gw (BVC): For any but fixed F € Hg; if p, € E and p, — OE;
then 4

lim |(F;E,,)| =0:

n—o0

If BVC holds, a compact argument leads that there exists a point g, € E and q;1 =
1;2;---: such that

(213)  lim [(GuiBY")| = sup{|(GuiBY)| : 4 €Eif # Ui (G}

When this is the case, the delicate thing is that the limiting point g,, may coincide with one
or several preceding Qx; K < n: In such case it is the multiple kernel an; but not K, ; that
has to be used in (2.12) in doing the G-S process with the preceding By;--- ; B,—1 ([16,
17, 5]). In each concrete context the theory involving repeating selections of parameters
is non-trivial: In various Hardy spaces one enjoys the beauty of the explicit construction
combining the Szego kernel and the Blaschke products [18, 1, 2]. See [9, 10, 11, 14, 15]
for concrete examples.

We note that repeating selection of parameter can be avoided in practice but cannot
when doing the theoretical formulation. or very close to the following supreme value in
the weak-POAFD case: By definition of supreme, for any € (0;1); a parameter ¢, € E
is ready to be found, different from any other previous qx;K = 1;--- ;n — 1; to have

(2.14) [(Gni B = sup{(G.;B}) : € Eiq# ai; -+ ;dn-1}:

The corresponding algorithm for consecutively finding such a sequence {q,,}°° , is called
W ae-P¥.q _’;; a0 A a4 o %D o™.a%4p, (WPOAFD). With the WPOAFD
algogrlithm onermay éhoose all qy;--- ;0, being distinguished.

Merely based on the maximal selection principles (2.14) or (2.13) one can show

o

F=> (F;By) B

k=1

([16, 17, 5]).
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An order O(y/n) convergence rate can be proved in a commonly used subspace ([16]).
Precisely, for functions F in the class

My ={F € Hg | 3{c,} and {E,,} such that F =) "¢,E,, and Y _|c,| <M};

n=1 n=1
the POAFD partial sums satisfy
& M
IF = (FiBi)mBellm, < ok

k=1

We note that POAFD has the same convergence rate as the Shannon expansion of ban-
dlimited entire functions into the sinc functions. In the POAFD case the orthonormal
system {By;---;B,; -} is not necessarily a basis but a system adaptive to the given
function F: For the Hardy space case, POAFD being reduced to AFD, verifies the Beurl-
ing decomposition of the Hardy space into direct sum of the forward and the backward
invariant subspaces. It is just this non-basis violation that gives the capacity of optimal
approximation. The algorithm code of POAFD, and some related ones as well, are avail-

able at request within the web-page http://www.fst.umac.mo/en/staff/fsttq.html.

AFD and POAFD have been seen to have two directions of development. One is n-best
kernel expansion. That is to determine N-parameters at one time, being obviously of better
optimality in sparse kernel approximation model. n-best approximation is motivated by
the traditional, yet still open in its ultimate global algorithm: the problem is called
the best approximation to Hardy space functions by rational functions of degree not
exceeding n ([3, 4, 19]). The gradient descending method for cyclic AFD ([19]) may be
adopted to give practical (not mathematical) n-best algorithms in RKHSs. The second
direction of development of POAFD is related to the Blaschke-product-like functions,
and interpolation type problems in general Hilbert spaces. For existing work along this
direction see [1, 2]. Effective applications of adaptive Fourier decomposition methods have
been found in image processing and system identification [7, 8, 6, 6, 23].

3. POAFD TYPE SPARSE SOLUTIONS FOR PROBLEMS (i), (ii) AND (iii)

POAFD gives the solution for Problem (i) in a fast converging pace. It further makes
itself to be fundamental building block of the solutions for Problem (ii) and (iii). In this
section we come back to the H-Hy formulation.

3.1. POAFD Expansion for F € Hg : the Solution of Problem (i). Subsequent to
what has been studied in the last section we have

o0

(3.15) S1= Z(Fi Bi) 1, Br = FsB = FpA™'K;
k=1

where Fp is the infinite row matrix consisting of (F; B;)y, ; and B is the infinite column
matrix consisting of B;;1 = 1;2;- - - ; being section by section G-S orthonormalizations of
IC; the latter being the infinite column matrix consisting of the POAFD-selected entries
K,.; and A is the transfer matrix of order co x co with entries (K,;B;)x, with the
property (K,,;B;) g, = 0 for i <j:
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3.2. The inversion Problem (ii). The H-
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The proof is complete. O

With a POAFD expansion of F we can get a series expansion with the same speed of
convergence for the inverse problem f+ = L~!F:

To practically solve an inverse problem under the H-Hg formulation the difficulty would
be on finding and characterizing the related objects N(L);N(L)* and K,: In any case
the span of the functions in {h,},cr is a dense subset of N(L)*: In a separate paper we
will treat the special case where the span of {h,},cr is a dense set of H itself, and then
the whole thing corresponds to approximation to identity.

3.3. The Moore-Penrose Pseudo-Inversion Problem (iii). Problem (iii) is under
the assumption that Hg is a closed subspace of a larger Hilbert space H: For a given
element F € H the aim is to find

f € H such that |||y = min{||f|j | T : |LF — F||,; is minimized}:

The solution of this problem is divided into two steps.

The First Step Find the unique function G € Hy that minimizes |F — G|| over all
G € Hg: As given in the basis method in §1, the function G is, in fact, the projection of
F into Hg; denoted G = Py, F: As we already deduced in §1, there holds G(q) = (F; K,)4:
The Second Step We seek a POAFD series expansion of G = (F; K); as

G=> (GiBi)u,Br = ((FiK())5Br) B
1 e

where the POAFD is with respect to the reproducing kernel of Hg, and the convergence
is in the Hg norm. The principle of POAFD shows that the convergence rate is <= 1f the

projection function is in M;: Thus we have

Theorem 3.2. UW %:,,_ &- HK,WVM ase, ;Va% - €55 "4 ;TCL.HK ssa 00,
subsg ”Hw €0 wsh, p LIP3 esie 04, % ieo¥F € H boy b /M’ﬂ
- Hoag !c‘. » POAFD - E’/Pc )
B
Ss = Z((Fi K7 Bim LBy
k=1

By, sty dr v g2 f%w F e i “f«’"g 60,

¥ s
M
IF =Y ((FiK))a: B L ' Be| < dp+ —
kzl () H K \/ﬁ

)& o B @9;.-& tge 0. P F = (Fi K(y) 7 € My
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