
ar
X

iv
:1

71
1.

04
51

4v
1 

 [
m

at
h.

C
V

] 
 1

3 
N

ov
 2

01
7

HILBERT TRANSFORMATION AND REPRESENTATION OF ax+ b
GROUP

PEI DANG, HUA LIU, AND TAO QIAN

Abstract. In this paper we study the Hilbert transformations over L2(R) and L2(T)
from the viewpoint of symmetry. For a linear operator over L2(R) commutative with the
ax+b group we show that the operator is of the form λI + ηH, where I and H are the
identity operator and Hilbert transformation respectively, and λ, η are complex numbers.
In the related literature this result was proved through first invoking the boundedness
result of the operator, proved though a big machinery. In our setting the boundedness is
a consequence of the boundedness of the Hilbert transformation. The methodology that
we use is Gelfand-Naimark’s representation of the ax+b group. Furthermore we prove
a similar result on the unit circle. Although there does not exist a group like ax+b on
the unit circle, we construct a semigroup to play the same symmetry role for the Hilbert
transformations over the circle L2(T).

1. Introduction

The Hilbert transformation given by the formula

Hf(x) =
1

π
p.v.

∫
R

f(y)

x− y
dy, x ∈ R, (1.1)

can be first defined for functions f of finite energy and locally of the Hölder type continuity.
It then can be extended to become a L2-bounded linear operator over the whole L2 space.
In the rest of the article we will omit the prix p.v. in the case of no confusion.

The Hilbert transformation has many applications, including solving problems in aero-
dynamics, condensed matter physics, optics, fluids, and engineering (see, for instance, [7]).
It is, especially, an indispensable tool in harmonic and signal analysis.

Hilbert transformations play a role to connect harmonic with complex analysis. In general
terms, a Hilbert transformation on a manifold, can be defined as the mapping from the
scalar part (real part) to the non-scalar part (imaginary part) of the boundary limits of
complex analytic functions on one of the two regions divided by the manifold ([1]). For
example, ∀u ∈ L2(R), u+ iHu belongs to the closed subspace of L2(R) constituted by the
non-tangential boundary limits of the functions in the complex Hardy space H2(C+). The
concerned closed subspace of L2(R) is denoted by H2

+(R). On the contrary, if f ∈ H2(C+),
then there exists a function u ∈ L2(R) such that the non-tangential boundary limit of f, still
denoted as f, possesses the form u+ iHu, where u can be chosen as real-valued or complex
valued. In particular, the non-tangential boundary limit of a Hardy H2(C+) function f can
have the expression (1/2)f + i(1/2)Hf on the boundary, phrased as the Plemelj formula
[12], that further implies Hf = −if. The latter turns to be a characterization of a function
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f ∈ L2(R) to be in H2
+(R) ([3]). The above relations can all be extended to Hardy spaces

Hp(C+) with 1 ≤ p < ∞ ([14]). For p = 2 the trace operator taking H2(C+) to H2
+(R) is,

in fact, an isometry between the Hilbert spaces. In harmonic and signal analysis there is
correspondence between the real signal u and analytic one u+ iHu ([13, 5]). In the current
study we restrict ourselves to p = 2. For the lower half complex plane we have an analogous
theory and, correspondingly, have the spaces H2(C−) and H2

−(R).
Denote by H± = H2

±(R) the spaces consisting of, respectively, the non-tangential bound-
ary limits of the upper and lower half Hardy spaces, the Hilbert transformation H can be
decomposed into the sum of the two projection operators over H±, respectively. In fact,
by the Plemelj formula,

L2(R) = H+
⊕

H−, H = (−i)(P+ −P−),

where P± denote the projection operators over H± respectively. By this decomposition it
is easy to check that the Hilbert transformation is a power self-inverse, and precisely,

(iH)2 = I, or H2 = −I,

where I is the identical operator [12]. We further note that

Hf(x) =
1

2π

∫
R

eiξx(−isgn(ξ))f∧(ξ)dξ,

where f∧ is the Fourier transform of f, and, for almost all x,

P±f(x) = ± 1

2π

∫ ±∞

0

eiξxf∧(ξ)dξ

=
1

2
f(x)± i

1

2
Hf(x).

In [18] a set of characterization conditions for an operator to be the Hilbert transforma-
tion is given, while the characterization conditions are in terms of properties of the images
of the operator restricted to the exponential functions. In [5] the authors further study the
aspect and give mathematical proofs of the results in [18]. In the present study we give
characterizations of the Hilbert transformations on the real line and on the unit circle in
terms of group symmetry in the respective contexts. What is interesting is that the Hilbert
transformation operator originally defined as an analysis object can be fully characterized
through algebraic operations.

On the real line we consider the following two group operations in relation to symmetry
properties of operators.

Denote by Ta the dilation operator

Taf = a−
1
2f(

x

a
), a > 0, ∀f ∈ L2(R), (1.2)

and τb the translation operator

τbf = f(x− b), b ∈ R, ∀f ∈ L2(R). (1.3)

It is evident that both Ta and τb are isometric mappings from L2(R) to itself. Then we
have the following lemma, [7].
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Lemma 1.1. For a ∈ R+, b ∈ R, both operators Ta and τb commutes with the Hilbert

transformation H,

TaH = HTa (1.4)

and

τbH = Hτb. (1.5)

Lemma 1.1 reveals the physical significance of the Hilbert transformation. (1.4) means
that H is independent of the scales, while (1.5) says that H is independent of the location
of the original point. We know that translation and dilation generate the ax+ b group. So
the Hilbert transformation is invariant under the action of the ax+ b group over L2(R). In
this sense we say that the Hilbert transformation has the symmetry of the ax + b group.
On the other hand this symmetry can characterize the Hilbert transformation. In fact, by
using the results in [6] one first obtains that in Rn, and in some other symmetric manifolds
as well, linear operators on Lp for some 1 ≤ p < ∞ commutating with translation or scaling
like operations are themselves bounded operator. As second step in [7] the author shows
that a linear bounded operator on Lp(R), 1 ≤ p < ∞, commuting with the translation and
scaling, is of the form

λI + ηH, (1.6)

where I and H are the identity operator and Hilbert transformations respectively, λ, η are
complex numbers.

In the present paper by using Gelfand-Naimark’s irreducible representation of the ax+b
group and Schur theorem we prove the characterization of the Hilbert transformation in
the L2(R) space in terms of the ax+ b group. We, in particular, do not assume the bound-
edness property of the operator commuting with the ax+ b group. With our approach the
boundedness is a consequence of the Gelfand-Naimark’s irreducible representation theorem
that avoids the big machinery establishes in [6].

It is more delicate to study the case of the unit circle T. Denote by L2(T) the space of

square integrable functions on T with the inner product 1
2π

∫ 2π

0
f(eiθ)g(eiθ)dθ. The Hilbert

transformation over L2(T), or circular Hilbert transformation, is defined as

H̃f(t) = p.v.
1

2π

∫ 2π

0

f(eis) cot(
θ − s

2
)ds. (1.7)

where t = eiθ, τ = eis. A closely related singular integral operator is

Cf(t) = p.v.
1

2πi

∫
T

f(τ)

τ − t
dτ = p.v.

1

2π

∫ 2π

0

f(eis)

eis − eiθ
eisds. (1.8)

In this article we call C the singular Cauchy transformation. Denote by H0 the functional

H0f = 1
2π

∫ 2π

0
f(eis)ds giving rise to the 0-th Fourier coefficient of the function to be

expanded. It is easy to check (the Plemelj formula, see, for instance, [12] or [15]) that

C =
i

2
H̃+

1

2
H0. (1.9)

H̃ has properties analogous with H. For instance, L2(T) is the direct sum of the two
Hardy spaces on, respectively, the two areas of the complex plane divided by the unit circle.
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H̃, modulo a constant multiple of H0, is a linear combination of the projections over the
two Hardy spaces, respectively, namely,

I = P+ +P−, P± =
1

2
(I±C),

and

H̃ = (−i)(P+ −P−) + iH0, H̃2 = −I +H0.

With the Fourier expansion

f(eit) =

∞∑
k=−∞

cke
ikt

there, in fact, hold

P+f(eit) =
∞∑
k=0

cke
ikt, P−f(eit) =

−1∑
k=−∞

cke
ikt,

and

H̃f(eit) = −ic0 +
∑
k 6=0

(−isgn(k))cke
ikt.

It seems to be unnatural to study symmetry of the singular Cauchy transformation due to
the non-zero curvature of the underlying manifold, viz., the circle. In the present paper
we are to deal with symmetry of the circular Hilbert transformation. At the first glance,
it should be the Möbius transformation group that gives rise to the characterization of H̃.
There, however, does not seem to exist a Fourier correspondence of the Möbius transfor-
mation. On the other hand, the phase translation and scale change generate the Fourier
inverse of the actions of the ax+ b group on L2(R). We were also to obtain the symmetry
by the module of the ax + b group, and, in order to do so, we treat (a, b) and (c, d) as
identical if ax + b ≡ cx + b (mod2π)∀x ∈ R. Unfortunately, the equivalent classes do not
form a group.

We construct a family of transformations over T whose natural representation is irre-
ducible over L2(T). Then we obtain the characterization of H̃ in analogy with H.

We at the end of the paper add some remarks on the role of the Möbius group in relation
to symmetry of the Hilbert transformation on the unit circle.

2. Induced representations of two groups

In Section 1 we mentioned that translations and dilations generate a nontrivial group G,
the ax + b group, which is the group of all affine transformations x → ax + b of R with
a > 0 and b ∈ R. Its underlying manifold is (0,∞)× R and the group law is defined by

((a, b)(a′, b′))(x) = aa′x+ b+ ab′ = (aa′, b+ ab′)(x), x ∈ R,

which gives

(a, b)(a′, b′) = (aa′, b+ ab′).

It is easy to check the relation (a, b)−1 = ( 1
a
,− b

a
). The measure da/a2 is the left Haar

measure and dadb/a is the right Haar measure on this group [2].
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There exists a natural unitary representation π of G, of infinite dimension, over the
Hilbert space L2(R). Denote by U(L2(R)) the operator group of the unitary automorphism
of L2(R). Then the group morphism π : G → U(L2(R)) is defined by

(π(a, b)f)(x) = (
1

a
)
1
2f(

x− b

a
), x ∈ R.

π(a, b) is also written as πab in this article.

It is obvious that both the Hardy spaces on respectively the upper and lower half planes
are the invariant subspaces of the natural representation of the ax + b group. So it is
reducible. It is not easy to get the irreducible representation of the ax+ b group since it is
both noncommutative and noncompact. In 1948, Gelfand and Naimark [4] first proved the
following Theorem.

Theorem 2.1 (Gelfand-Naimark). The ax+b group has only two nontrivial irreducible rep-

resentation, π̌+(a, b) : (L2(0,+∞) → L2(0,+∞)) and π̌−(a, b) : (L2(−∞, 0) → L2(−∞, 0))
as

[π̌+(a, b)f ](x) = a
1
2 e2πibxf(ax), (x > 0) (2.1)

[π̌−(a, b)f ](x) = a
1
2 e2πibxf(ax), (x < 0) (2.2)

We define a representation of the ax+ b group over L2(R) as

(π̌(a, b)f)(x) = a
1
2 e2πibxf(ax), a ∈ R+, b ∈ R, f ∈ L(R). (2.3)

π̌±(a, b) and π̌(a, b) are also written as π̌±
ab and π̌ab, respectively.

It is obvious that L2(R) can be decomposed into the orthogonal direct sum of L2(−∞, 0)
and L2(0,+∞), i.e, L2(R) = L2(−∞, 0)⊕L2(0,+∞). By Theorem 2.1, the representation
π̌ is just the sum of two irreducible representations π̌± over L2(−∞, 0) and L2(0,+∞)
respectively.

Denote by F the Fourier transformation. We also denote f∧ = Ff. For (a, b) in the
ax+ b group, define F(π) by

((F(π)(a, b))f)(x) = (F−1(πabf
∧))(x), f ∈ L2(R). (2.4)

Then we have

((F(π)(a, b))f)(x) =
1√
2π

∫ ∞

−∞

a−
1
2f∧(

y

a
− b

a
)eiyxdy

= a
1
2

1√
2π

∫ ∞

−∞

f∧(
y − b

a
)ei

y−b

a
(ax)eibxd

y − b

a

= a
1
2 eibxf(ax) = (π̌a,bf)(x). (2.5)

Thus the Fourier transformation is just the isomorphism between the two representation
π with π̌. Then π has two sub-representations that are equivalent to π̌± by the Fourier
correspondence, respectively. Let H± be the the images of L2(0,+∞) and L2(−∞, 0)
under the Fourier transformation, respectively. Let π± be the restriction of π over H±,
respectively.
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Theorem 2.2. For π = πab, we have π = π+
⊕

π−, where π± are defined by

π+f = (π̌+(a, b)f∨)∧, f ∈ H+;

π−f = (π̌−(a, b)f∨)∧, f ∈ H−.

Then π± are irreducible representations of the ax+ b group over H±, respectively.

To obtain our main results we introduce a Schur’s lemma in the version of the infinite
dimension. Let H be a complex Hilbert space, and A a family of transformations acting on
H satisfying H =

⋃
T∈A T (H). We say that A acts irreducibly on H if there does not exist

a decomposition of H such that H1 ⊕H2, where both H1 and H2 are invariant subspaces
of A.

Theorem 2.3. [8] (Dixmier’s Lemma) Let H be a complex separable Hilbert space. If a

family of transformations A acts irreducibly on H, then any linear transformation T which

commutes with every T ∈ A is of the form T = λI where λ be a complex number and I is

the identity transformation.

Let σ be a representation of a group G over the Hilbert space H. It is obvious that σ is
irreducible if and only if {σ(g) : g ∈ G} acts irreducibly on H. Then by the above theorem,
the following theorem is evident.

Theorem 2.4. (Schur’s Lemma) Suppose that σ is a irreducible representation of a

group G over a complex separable Hilbert space H. Then any linear transformation T
which commutes with σ is of the form T = λI where λ is a complex number and I is the

identity transformation.

We note that T is not required to be a bounded operator in either of the above theorems.
We will be based on the above two theorems.

3. Characterization of the Hilbert transformation on the Line

We can now state the symmetry properties of the Hilbert transformationH. It is obvious
that the operator group π(G) is generated by Ta and τb. Then by Lemma 1.1 we get that
the Hilbert transformation H is invariant under the actions of π(G) over L2(R). That is
the following theorem.

Theorem 3.1. π commutes with the Hilbert transform H, i.e.,

πabH(f) = Hπab(f), (a, b) ∈ ax + b, f ∈ L2(R). (3.1)

Then by Theorem 2.2 and 2.4, the restrictions of π over H± are the scalar operators.
Let us now further identify the spaces H±. Denote by H2

± the Hardy spaces on the upper
and lower half planes respectively.

Theorem 3.2. H+ = H2
+ and H− = H2

−.

Proof. It is trivial to check that both H2
± are the closed invariant subspaces of π(G). By

Theorem 2.1 there exist exactly two nontrivial irreducible representations of the ax + b
group. Then H2

± must be H±.
Given 0 6= f ∈ H+. By the definition of H+, its Fourier transform f∧ ∈ L2(0,+∞). We

define

F (z) =
1

2π

∫ +∞

−∞

f∧(t)eitz dt =
1

2π

∫ +∞

0

f∧(t)eitxe−ty dt, z = x+ iy.
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Obviously, for y > 0, F (z) is analytic. By the theory of the Hardy space on the upper half
plane we obtain that f(x) is the non-tangential boundary limit of F (z) when z tends to
x from the above. That is, f(x) is the boundary value of F (z), i.e, f belongs to H2

+. So
H+ = H2

+, and then H− = H2
−. �

We note that from the Fourier multiplier representation of the Hilbert transformation
we have

(Hf)∧(ξ) = −isgn(ξ)f∧(ξ), ξ ∈ R. (3.2)

The following theorem is now obvious.

Theorem 3.3. H+ and H− are respectively the eigen-subspaces associated to eigenvalues

−i and i of the Hilbert transformation. That is

H|H+ = −iI|H+ , H|H− = iI|H−.

Although the Hardy space theory and the related Fourier multiplier theory imply Theo-
rem 3.3, it is difficult for them to discuss the converse of the theorem. The converse of the
theorem addresses the symmetry of the Hilbert transformation.

Theorem 3.4. Suppose that T is a linear operator from L2(R) to itself, and T commutes

with the natural representation of the group ax+ b. Then there exist two complex numbers

λ, η such that

T = λI+ ηH. (3.3)

Moreover, if T is an anti-symmetric, norm-preserving and real operator, it must be either

H or −H.

Proof. By Theorem 2.4 both the restrictions of T over H± are the scalar operators since
T commutes with π(G). Assume that T = k1I|H+ over H+ and T = k2I|H− over H−,
respectively. For f ∈ L2(R) there exist f1 ∈ H+ and f2 ∈ H− such that f = f1 + f2. Then
we have

Tf = Tf1 +Tf2 = k1f1 + k2f2

=
k1 + k2

2
(f1 + f2) +

k1 − k2
2i

(if1 − if2)

=
k2 + k1

2
If +

k2 − k1
2i

Hf. (3.4)

Let λ = k2+k1
2

and η = k2−k1
2i

. (3.4) completes the proof of (3.3).

IfT is a real operator, its non-real eigenvalues must appear in pairs. This implies k1 = k2.
If T is also anti-symmetric, its eigenvalues must be pure complex numbers, i.e., k1 = −k2.
Finally, if T preserves the norm, we obtain that |k1| = |k2| = 1. Therefore, λ = 0 and
η = 1 or −1. �

Remark. For bounded operators T Theorem 3.3 is a known result in the literature of Hilbert
transformation. The above (3.4) is precisely the relation (4.82) in [7]. Moreover, linear
self-maps of L2(R) that commute with translations (even just with one translation) are
automatically continuous [6]. Since translation operators over L2(R) do not have critical
eigenvalue, by Corollary 3.5 of [6], linear self-maps of L2(R) that commute with translations
must be continuous. The relation (4.82) in [7] is proved by the multiplier theory from [16],
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where the assumption of boundedness of T is essential. In the present paper we derive
Theorem 3.3 without invoking the results from [6, 7, 16]. We use the Gelfend-Naimarks
representation of ax + b to deal with the issue. The new methodology would enable us
to study Hilbert transformations on other types of manifolds with symmetry properties
similar to translations and dilations. As example, in the next section we study the Hilbert
transformation on the unit circle in an analogous way.

4. Characterization of the Hilbert transformation on the Circle

We did not find a group acting on T suitable to study the Hilbert transformation over
L2(T). Fortunately, there exists a semigroup on the unit circle that plays a similar role as
the ax + b group on the real line. The semigroup on the unit circle makes it possible to
carry on a similar but not exactly the same procedure as above for the line.

Denote by N the set of pairs (n, β), n ∈ Z+, β ∈ R. We will also use the notation αθ+β,
α ∈ Q+, β ∈ R. The latter turns out to be a subgroup of the ax + b group. Be similar to
the case of the ax + b group, we would hope that αθ + β can be considered as an affine
transformation on R such that (n, β)(θ) = nθ + β mod (2π). Let (n, β) ∈ N. Define its
action on T by (n, β)t = ei(nθ+β), where t = eiθ ∈ T. Unfortunately it does not work for the
non-integer α’s by this machine. That is, αθ+ β is not congruent to α(θ+2π)+ β modulo
2π if α is not an integer. It means that it is not well-defined for the action of αθ+ β on T.

In general the element of the αθ + β group is not the automorphism of T. There, however,
still exists a natural action of the αθ + β group over the space L2(T).

Define by π the mapping from the αθ+β group to the the set of bounded endomorphisms
of L2(T) as follows: for n ∈ Z+ and f ∈ L2(T),

(π(n, β))f(t) = (
1

n
)
1
2f(tneiβ), t ∈ T; (4.1)

and, for a general positive rational number α, α = q/p, p, q ∈ Z+, p > 1 and (p, q) = 1,
let

(π(
q

p
, β)f)(t) = (

p

q
)
1
2
1

p
(f(ei(

q

p
θ+β)) + f(ei(

q

p
θ+β)ω1

p) + · · ·+ f(ei(
q

p
θ+β)ωp−1

p )), (4.2)

where τ = eiθ ∈ T and ωp = ei
2π
p .

Notice that ei
q2kπ

p is one of the p-th roots of the unity. Then the p-tuple

(ei
q2kπ

p , ei
q2kπ

p w1
p, · · · , ei

q2kπ
p wp−1

p ) is just a rearrangement of (1, ω1
p, · · · , ωp−1

p ). Thus (4.2) is
independent of the choice of θ. We note that (4.1) and (4.2) do not give the representation
of the αθ + β group. But we still can use it to derive the characterization of the Hilbert
transformation over L2(T).

In the rest of the section we denoted by παβ the image of (α, β) under π. We say that π
commutes with a linear operator T if παβT = Tπαβ for all (α, β) in the αθ + β group.

Theorem 4.1. π commutes with the Hilbert transformation on the unit circle.
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Proof. Let p, q ∈ Z and (p, q) = 1. First we check that H0 is invariant under π. In fact, for
f ∈ L2(T) we have

(H0(π(
q

p
, β)f))(t) =

1

2π

∫ 2π

0

(f(ei(
q

p
s+β)) + · · ·+ f(ei(

q

p
s+β)ωp−1

p ))ds

= (
p

q
)
1
2
1

2π

∫ 2π

0

f(eis)ds = (π(
q

p
, β)(H0f))(t).

Then by (1.9) it is sufficient to prove that π commutes with the singular Cauchy transfor-
mation C. Notice that π q

p
β is the composition of πq0 with π 1

p
β, i.e., π q

p
β = πq0π 1

p
β. We only

prove the cases of α = n or 1
n
for positive integers n.

Let α = n be a positive integer and β ∈ R. It is obvious that we may assume n > 1.
Then for f ∈ L2(T) with the Hölder type continuipr121 Tf
4.31992 68.063(m)1.96045(o)-2.83758(v)34.1874(e)3.4779]TJ
7.31992 -3652 Tf
1Hd N=dse ==

=
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Similarly, for 1 < k ≤ n− 1 we have

p.v.

∫ 2nπ

0

f(ei(φ+β))ei
n−1−k

n
θsk

eiφ − eiβ
dθ =

n∑
l=1

p.v.

∫ 2lπ

2(l−1)

f(ei(φ+β))ei
n−1−k

n
θsk

eiφ − sn
dθ (4.6)

= p.v.

∫ 2π

0

f(ei(φ+β))sk

eiφ − eiβ
(
n∑
l=1

ei
n−1−k

n
(θ+2lπ))dθ

= p.v.

∫ 2π

0

f(ei(φ+β))sk

eiφ − eiβ
ei

n−1−k
n

θ(
n∑
l=1

ei
n−1−k

n
(2lπ))dθ.

Notice that n > k > 1 and ei
n−1−k

n
(2lπ), l = 1, 2, · · · , n, are just all of the n-roots of the

unity, which means that
n∑
l=1

ei
n−1−k

n
(2lπ) = 0. (4.7)

Now by (4.4),(4.5),(4.6) and (4.7), the proposition is proved for α ∈ Z+.
For α = 1

n
we have

(Cπαβ)f(s) =
1

2πi
p.v.

∫
T

(παβf)(t)

t− s
dt (4.8)

=
1

2πi
p.v.

∫ 2π

0

n
1
2
1

n
(f(ei

1
n
θeiβ) + · · ·

+f(ei
1
n
θωn−1

n eiβ))
1

eiθ − s
deiθ.

For 1 ≤ k ≤ n, let φ = 1
n
θ in the k-th terms of the sum of the above integrand. Then we

have

1

2πi
p.v.

∫ 2π

0

n
1
2
1

n
(f(ei

1
n
θωk−1

n eiβ)
deiθ

eiθ − s
(4.9)

=
1

2π
n

1
2p.v.

∫ 2
n
π

0

f(eiφωk−1
n eiβ)einφ

einφ − s
dφ

=
1

2π
n

1
2p.v.

∫ 2
n
π

0

f(eiφωk−1
n eiβ)ei(n−1)φeiφ

(eiφ − ei
1
n
ψ)(eiφ − ei

1
n
ψwn) · · · (eiφ − ei

1
n
ψwn−1

n )
dφ,

where s = eiψ ∈ T and wn = 1
ωn

= e−i
2π
n . Notice that wn is still one of the n-th roots of

the unity. Then we obtain that (1− wn) · · · (1− wn−1
n ) = limz→1

zn−1
z−1

= n and

ei(n−1)φ

(eiφ − ei
1
n
ψ)(eiφ − ei

1
n
ψwn) · · · (eiφ − ei

1
n
ψwn−1

n )
(4.10)

=
1

(1− wn) · · · (1− wn−1
n )

(
1

eiφ − ei
1
n
ψ
+ · · ·+ 1

eiφ − ei
1
n
ψwn−1

n

)

=
1

n
(

1

eiφ − ei
1
n
ψ
+ · · ·+ 1

eiφ − ei
1
n
ψwn−1

n

).
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Denote by

Akj =
1

2π

n
1
2

n
p.v.

∫ 2
n
π

0

f(eiφωk−1
n eiβ)eiφ

eiφ − ei
1
n
ψwj−1

n

dφ, j, k = 1, · · · , n− 1. (4.11)

From (4.8)-(4.11) we have

(Cπαβ)f(s) =
n∑
k=1

n∑
j=1

Akj =
n−1∑
m=0

(
∑

1≤k,j≤n,j−k≡m(mod n)

Ak,j). (4.12)

It is obvious that
∑

1≤k,j≤n,j−k≡0(mod n)Ak,j =
∑n

j=1Aj,j. But by (4.11) we obtain

n∑
j=1

Aj,j =
1

2π

n
1
2

n
p.v.(

∫ 2π
n

0

f(eiφeiβ)eiφ

eiφ − ei
1
n
ψ
dφ+

∫ 2π
n

0

f(eiφωne
iβ)eiφ

eiφ − ei
1
n
ψwn

dφ (4.13)

+ · · ·
∫ 2π

n

0

f(eiφωn−1
n eiβ)eiφ

eiφ − ei
1
n
ψwn−1

n

dφ)

=
1

2πi

n
1
2

n
p.v.(

∫ 2π
n

0

f(eiφeiβ)

eiφ − ei
1
n
ψ
deiφ +

∫ 2π
n

0

f(eiφei
2π
n eiβ)ei

2π
n

eiφei
2π
n − ei

1
n
ψ

deiφ

+ · · ·
∫ 2π

n

0

f(eiφei
2(n−1)π

n eiβ)ei
2(n−1)π

n

eiφei
2(n−1)π

n − ei
1
n
ψ

deiφ)

=
1

2πi

n
1
2

n
p.v.(

∫ 2πi
n

0

+ · · ·+
∫ 2π

2(n−1)π
n

)
f(eiφeiβ)deiφ

eiφ − ei
1
n
ψ

=
1

2πi

n
1
2

n
p.v.

∫ 2π

0

f(eiφeiβ)deiφ

eiφ − ei
1
n
ψ

=
1

2πi

n
1
2

n
p.v.

∫ 2π

0

f(eiφ)deiφ

eiφ − ei
1
n
ψeiβ
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Similarly, for m ≥ 1, recalling that ωkn, ω
k+1
n , · · · , ωk+n−1

n still run through the n-th roots of
the unity, we get

∑
1≤k,j≤n,j−k≡m(mod n)

Ak,j (4.14)

=
1

2π

n
1
2

n
p.v.(

∫ 2π
n

0

f(eiφωmn e
iβ)

eiφ − ei
1
n
ψ

deiφ +

∫ 2π
n

0

f(eiφωm+1
n eiβ)

eiφ − ei
1
n
ψwn

deiφ

+ · · ·+
∫ 2π

n

0

f(eiφωn−1
n eiβ)

eiφ − ei
1
n
ψwn−m−1

n

deiφ +

∫ 2πi
n

0

f(eiφeiβ)

eiφ − ei
1
n
ψwn−m

n

deiφ

+ · · ·+
∫ 2π

n

0

f(eiφωm−1
n eiβ)

eiφ − ei
1
n
ψwn−1

n

deiφ)

=
1

2πi

n
1
2

n
p.v.(

∫ 2π
n

0

f(eiφωmn e
iβ)

eiφ − ei
1
n
ψ

deiφ +

∫ 2π
n

0

f(eiφωm+1
n eiβ)

eiφ − ei
1
n
ψwn

deiφ

+ · · ·+
∫ 2π

n

0

f(eiφωn−1
n eiβ)

eiφ − ei
1
n
ψwn−m−1

n

deiφ +

∫ 2π
n

0

f(eiφωnne
iβ)

eiφ − ei
1
n
ψwn−m

n

deiφ

+ · · ·+
∫ 2π

n

0

f(eiφωn+m−1
n eiβ)

eiφ − ei
1
n
ψwn−1

n

deiφ)

=
1

2πi

n
1
2

n
p.v.

∫
T

f(τ)

τ − ei
1
n
ψωmn e

iβ
dτ, m = 1, 2, · · · , n− 1.

From (4.12) and (4.14), we have

(Cπ 1
n
,β)f(s) = n

1
2
1

n
(
n−1∑
m=0

1

2πi

∫
T

f(τ)

ei
1
n
ψωmn e

iβ − τ
dτ) = π 1

n
,β(Cf)s. (4.15)

(4.15) is valid for f ∈ L2(T) because C is a bounded operator over L2(T) and the class of
the functions of the Hölder continuity is dense in L2(T). This completes the proof of the
theorem.

�

5. Decomposition of the concerned operators and spaces on the citcle

In the rest of the paper we discuss the irreducibility of π. Then we characterize the
circular Hilbert transformation H̃.

In the previous section we point out that G = {(α, β), α or 1
α
∈ Z+, ; b ∈ R} is not a

group. But we can still prove that the family of π(α,β), (α, β) ∈ G, acts irreducibly on some
subspaces of L2(T).

Given a family of functions M in L2(T). Denote by

Z(M) =
⋂
f∈M

{n ∈ Z, fn = 0}, (5.1)
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where fn are the Fourier coefficients of f such that f(t) =
∞∑

n=−∞

fnt
n. By (5.1), Z(M) = ∅

means that for every n ∈ Z there exists at least one f (n) ∈ M such that f
(n)
n 6= 0.

Theorem 5.1. Assume that Z(M) is empty. Suppose that φ belongs to L2(T) and satisfies

f ∗ φ ≡ 0, ∀f ∈ M. (5.2)

Then φ ≡ 0.

Proof. Assume that

φ(t) =
∞∑

n=−∞

φnt
n =

∞∑
n=−∞

φne
inθ, t = eiθ;

and

f(t) =

∞∑
n=−∞

fnt
n =

∞∑
n=−∞

fne
inθ, t = eiθ

for f ∈ M.
Then we obtain

(f ∗ φ)(eiθ) = F−1(f̂ φ̂) =

∞∑
n=−∞

fnφne
inθ, (5.3)

which gives fnφn = 0, ∀f ∈ M, especially f
(n)
n φn = 0. Thus φn = 0, ∀n ∈ Z, which means

that φ ≡ 0. �

Denote by H+(T) the Hardy space on the unit disc, H−(T) the Hardy space on the
complement of the unit disc in the whole complex plane. Denote by H0 the subspace of
constant functions, and H̃+(T) its orthogonal complement in H+(T). Then we obtain that
L2(T) = H̃+

⊕
H0

⊕
H−. It is obvious that H0 is invariant to π. It is easy to check that

there do not exist f ∈ H̃+(T) and π(α,β) such that π(α,β)f is a constant function. Thus

both H0 and H̃+(T) are invariant spaces of π(α,β), (α, β) ∈ G.

The following theorem plays the same role on the circle as the Gelfend-Naimark’s repre-
sentation for the ax+b group on the real axis.

Theorem 5.2. The family of π(α,β), (α, β) ∈ G, acts irreducibly over H̃+(T) and H−(T)
respectively.

Proof. We only prove the first part. The proof of the other part is similar.
If the family π(α,β) were not irreducible over H̃+(T), there would exist two proper sub-

spacesH1, H2 ⊂ H̃+(T) such that H̃+(T) = H1

⊕
H2, and bothH1 andH2 are the invariant

spaces of {π(α,β), (α, β) ∈ G}.
Claim: Z(H1) ∩ Z+ can not be empty.
Otherwise, assume that Z(H1)∩Z+ = ∅. Since Z(H−(T)) = Z+∪{0}, Z(H0) = Z\{0},

we obtain that Z(H−(T)) ∩ Z(H0) = Z+ and

Z(H1 ∪H0 ∪H−(T)) = Z(H1) ∩ Z(H0) ∩ Z(H−(T)) = ∅. (5.4)
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Let h ∈ H2. Since all H
0, H1 and H2 are invariant spaces of the transforms π(1,θ) for θ ∈ R

we have
< π(1,θ)f, h >= 0, ∀f ∈ H1 ∪H0 ∪H−(T), θ ∈ R.

Recalling that π(1,θ)f(e
is) = f(ei(s−θ)), we obtain that

f ∗ h(eiθ) = 1

2π

∫ 2π

0

f(ei(s−θ))h(eis)ds = 0, ∀f ∈ H1 ∪H0 ∪H−(T).

Now by Theorem 5.1, we obtain h ≡ 0, which contradicts with H2 being proper. So
Z(H1) ∩ Z+ can not be empty.

According to the just proved Claim there exists at least one positive integer m such
that m ∈ Z(H1). Since g(t) = tm ∈ H̃+(T), there exist f ′(t) ∈ H1 and f ′′(t) ∈ H2 such
that tm = f ′(t) + f ′′(t). Recall that m ∈ Z(H1) means f ′

m = 0. Then we have

0 =< f ′, f ′′ >=< f ′, tm − f ′ >=< f ′, tm > − < f ′.f ′ >= f ′
m − ||f ′||2 = −||f ′||2,

which gives f ′(t) = 0. So tm = f ′′(t) ∈ H2. Now by (4.2) we have t = π( 1
m
,0)t

m ∈ H2.

As consequence, tn = π(n,0)t are all in H2 for n ∈ Z+. Hence H̃+(T) = span(t, t2, · · · , ) ⊆
H2 ⊆ H̃+(T), which contradicts with the assumption that H2 is proper.

�

By the Plemelj formula ([12]) it is easy to prove the following theorem.

Theorem 5.3. Let H̃ be the Hilbert transformation on L2(T). Then

H̃|H̃+ = −iI|H̃+ , C|H0 = 0, C|H− = iI|H−. (5.5)

We end this paper with the inverse of Theorem 5.3.

Theorem 5.4. Let T be a bounded operator from L2(T) to itself. Assume that T̃ commutes

with π(α,β), (α, β) ∈ G. Then there exist three complex numbers λ, η, ω such that

T̃|H̃+ = λI|H̃+, T̃|H0 = ηIH0, T̃|H− = ωI|H−.

Proof. It is obvious that the family of π(α,β), (α, β) ∈ G) acts irreducibly on H0. By
Theorem 5.2 and 2.3, T must be scalar operators on, respectively, H+, H0, and H−.

�

Remark. I. Theorem 5.4, as far as what we are aware, is a new result. It is also not easy to
prove by the methods from [7, 16] because of lack of the general dilation on the unit circle.

II. It is also possible to characterize the circular Hilbert transformation by the symmetry
of the generalized Möbius group containing both the rotations and Möbius transforms.
Define τθz = eiθz, θ ∈ R and ϕa(z) = z−a

1−az
, a ∈ (0, 1). Then the Möbius group, M, is

generated by τθ and ϕa. There exists a natural representation of M over L2(T) as following:
for ϕ ∈ M with the expression ϕ(z) = eiθ z−a

1−az
, we define

((πMϕ)(f))(t) =

√
1− a2

1−
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But the Fourier series expansions of the Möbius transforms are complicated. So we can
not obtain the precise structures of C in the phase space as we discussed in the real line
case.
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