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In applications, one often deals with signals of =mite ‘energy whose Fourier transform has compact supports, viz, the so-called ban-
dlimited signals. If f € L2(R) is bandlimited with suppf C [A,B], where A = inff and B = supf, then, we say that f has band [A, B].
The band of f is denoted as Band{f}. We call B — A the bandwidth of f. For the purpose of this paper, we use FH?[4,B] = {f €
L2(R)| Band{f} C [A,B]} for the set of the bandlimited signals whose bands are contained in [A, B]. Two classical problems of long
interest in a number of practical areas, including optics, antenna theory and physics, are formulated as follows: The =rst is to =nd all
functions g such that Band{fg} C Band{f}. The second is referred as phase retrieval problem, that is, to=nd all-pass Titers e/®® such that
Band{fe’?)} ¢ Band{f}. According to the descriptions of these two problems, the solution of the second problem is closely related to
that of the =rst problem. About the =rst problem, we learn that, if f and g € L?(R) with, respectively, bands [A, B] and [C, D], then fg has
band [A + C, B + D] by the well-known Titchmarsh’s convolution theorem on compact supported distributions. This shows that if A, B
are 7mite numbers, then g cannot be of “mite band. In order to get concrete and structural information of g, an ef7cient and classical
way is to make use of knowledge in complex analysis. The Paley Winer theorem asserts that if f in L2(R), then f € FH2[0,A]
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Lemma 2.1
Let a non-zero function f € FH?[0, A] and
1T (A
F(z) = —/ f(w)e“?*dw. (2.3)
2 0
Then, f(x) has a factorization of the form
f(x) = O ()l (x), (2.4)

where Of(x) is the boundary value of the outer function of F(z)

i 1+ tx
Or(x) = expIn|f(x)| + — lim ——— In|f(t)|dt;,
f() p | ( )| T e—sot —t]>€ (X—t)(1 +t2) | ()|

I¥(x) = €/axFb)BY(x) is the boundary value of the inner function of F(z), where a, is some nonnegative real number in [0, A], b, is a
real number and B (x) is the boundary value of the Blaschke product formed by the zeros of F(z) in the upper-half plane Cc+.

Remark
If f e FH2[0,A]and 0 € supp/f\, then the boundary inner function of f(x) is [/ (x) = e”’“B;’(x).

Lemma 2.2
Assume that f # 0 and f € FH?[0, A]. The following result holds:

() Ifg e HP(R),1 < p < oo and fg € L%(R), then supp Eg C [0, 00);
(i) Ifg € HP(R),1 < p < coandfg € L2(R), then supp fg C (—o0, Al.

Proof

(i) If p = oo, then fg € H*(R), and consequently, supp@ C [0, 00).For 1 < p < oo, there exists 0 < r < oo such that % —+ % = } or,

equivalently, zi/r + # = 1. It can be easily shown, by H Ider’s inequality and de=nition of the complex Hardy H'(C1) space,

fg € H'(R).Because fg € [2(R), we have fg € H?2(R) (Corollary II. 4.3, [12]), and therefore suppng C [0, 0). R
(ii) Because f € FH2[0,A], we have e**f(x) € FH2[0,A]. Let h(x) := e*F(x)g(x). The result of (i) shows that supph C [0, c0).

Because (@)(w) = E(A — w), we have suppfé C (—00, A]. The proof is ™ished. O

SetHP(R) := {f|f € H’(R)}
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Set fi(x) := e™f(x). Then, f; € FH?[0, A] if and only if f € F H?[0, A]. Invoking Theorem 2.3, we have

Corollary 2.4

Let f, g be non-zero functions, f € FH?[0,A], g € H?(R), 1 < p < oo. Assume that fg € L2(R). Then, fg € FH2[0,A] if and only if
g € HP(R) N IkHP(R), where [, := /(@b Bl (x) is the boundary inner function of fi(x) := €**f(x), g is some nonnegative real number
in [0, A], by is a real number and Bf,(x) is the boundary value of the Blaschke product formed by the zeros of F(z) in the lower-half plane
C™ ={zlz=x—liy, y > 0}.

Note that
1 A 1 [A— o
Fi(z) .= 07 ') (2) = —/ fi(w)e'®?dw = —/ f(A — w)e?? = ¢*F(z).
2 0 27 0

Thus, the zeroes of Fi(z) in the upper-half complex plane are the conjugates of those of F(z) in the lower-half complex plane. We denote
by {a,} and { B} the sets of the zeros of F(z) in the upper-half complex plane C T and in the lower-half complex plane C~ (they repeat
according to their respective multiples), respectively, where F(2) is given by (2.3). Then, B{ in Theorem 2.3 and B’, in Corollary 2.4 are
respectively given by

72 J—
BU(X):I—[W/%'*‘”_X—OM B/(X):l—[|/3k + 11 x— Bk (2.5)
f T x-w f 5 B +1 X B '
k

(&7

Let f € FH?[0, A] be a non-zero function. By Theorem 2.3 and Corollary 2.4, we learn thatif g € HP(R) org € HP(R),1 < p < oo,
a function g making fg € FH?[0, A] can be completely characterized by a backward shift invariant subspace HP(R) () /H?(R), where
l'is an inner function related to f. Next, we extend the just obtained results to general functions g € LP(R),1 < p < oo. Because the
operator H is bounded on LP(R), 1 < p < oo, for any g € LP(R), we have the projectional Hardy spaces decomposition

90 = 39+ () +9-(0), 26

where g+ := g + iHg and g_ := g — iHg with g4, g— € H?(R). They are, respectively, called the analytic signal and the dual analytic
signal of g. We —rst have

Lemma 2.5
Let f be non-zero, f € FH?[0, A]. There exists a function g € LP(R), 1 < p < oo, such that fg € FH2[0, A] if and only if both the relations
fg1 € FH?[0,A] and fg— € FH?[0,A] hold.

Proof
Suppose that fg € FH?[0, A], then suppfg C [0, A]. Because f € FH?[0,A], g+ € HP(R) and g_ € HP(R), by Lemma 2.2, we have

supp(fg+) C [0,00),  supp(fg—) < (—oo, Al.

Thus, (fg)(w) = (fg—)(w) = 0forw < 0and (fg)(w) = (fg+)(w) for @ > A. These yield that fg_ € FH2[0,A] and fg € FHZ2[0,A].
Conversely, if fg+ € FH?[0,A] and fg— € FH?[0,A], then fg = fg4+ + fg— € FH?[0, A]. The proof is complete. O

In virtue of Theorem 2.3, Corollary 2.4 and Lemma 2.5, we obtain

Theorem 2.6
Let f, g be non-zero, f € FH?[0,A], g € LP(R),1 < p < co and fg € L2(R). Then, fg € FH?[0,A] if and only if

g= € H(R) [ )" B (0P (R),
and
g+ € H(R) ()" Bi00HP(R),
where g, and g, are two nonnegative real constants in [0, A] and B} (x) and Bf((x) are respectively given in (2.5).

Remark R R R
Let f € FH?2[0,A]. If 0 € suppf, then a, = 0.If A € suppf, then 0 € suppf,and a; = 0.

The aforementioned theorem gives a characterization for the solutions g € LP(R),1 < p < oo, to the band preserving problem.
It, however, does not cover the cases p = 1 and p = oo due to the failure of the projectional Hardy spaces decomposition. The case
p = oo is directly related to the phase retrieval problem. In the succeeding section, we will treat the two exceptional cases as follows.

Theorem 2.7
Letf € FH?[0,A], g € [P(R), 1 < p < oo be non-zero functions and fg € L2(R). Then, fg € FH?[0, A] if and only if

g e FHP(R) [\ IHHP(®) = I¥ [H’”(R) N l‘,‘l’,HP(R)] , 2.7)
where ¢ := ¢/(@*TbJ) Bl (x) is the inner function of f and /}(x) := e@* ) BL(x) is the inner function of f; (x) := e"*f(x).
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Proof
Let h := fg. Because f, h € FHZ[O,A], by Lemma 2.1, we have f = O¢l{ and h = Oglp, where [ is the inner function of f with

the form e/(@wx 0B (x) and I, is the inner function of h. From the facts that g € LP(R), In|h| = In|fg|,In|f| € L2 (lj_‘rz), we have
Og:= § € H°(R).Thus

h Oyl —
- =22 cEHP(R).
Fow
On the other hand, for h;(x) := e*h(x), fi(x) := e**f(x), there hold h;,f, € FH?[0,A]. Because In |h;| = In|h|,In|f| = In|f|. Then,
fi = O¢lk and h = Ol}, where IL is the inner function of f; with the form e/@*®) Bl (x) and I, is the inner function of h;. Hence

hy _ Only _ Ogl,

=-l="h e LHP(R).
i ol I H®)

__h _h
I77

By combining with g € ZHP(R), we have g € PHP(R) () IlHP(R) = I [H”(R) N /t;/’pr(R)].

Conversely, if g € PHP(R) () ILHP(R), then there exist g1,g, € HP(R) such that g = Ifgy and g = [.gs. Let fix) := e™f(x). Because
f.fi € FH?[0,A] and fg € L2(R), as assumed, we have fg = O¢l!l!g; = g,10¢ € H*(R) and e*F(x)g(x) = Opltlig, = Or, g, € H*(R).
Hence, supp fg € [0,A] and fg € FH?[0, A]. The proof is complete. O

3. Characterization of backward shift invariant subspace and its application to band
preserving and phase retrieval problems

From the previous analysis, we learn that the solutions g of the band preserving problem are related to backward shift invariant spaces
HP(R) () IHP(R), where [ is some inner function. Under the condition f € FH?([0, A]), the related inner function / is with the simplied
form I(x) = @+ B(x),a > 0,b € R,Bis a Blaschke product. To know more about the solutions g is to know more about the con-
struction of the backward shift invariant spaces. Many relevant references are in Russian and are for the disc case [8,9, 13]. Specically,
for the half-plane case, the literature on construction of H?(R) () €™+ B(x)HP (R) in terms of the system consisting of shifted Cauchy
kernels does not seem to be available. In this paper, we provide the proof for such construction on the upper-half plane.

When a = 0 and B(x) of the boundary value of the Blaschke product given in (1.2). Let By(x) = 1.

& +1 x—g V/2im
Bn(x) = l_[ | 12 | : %r en(x) = 79,1) Bp—1(x), n=>1.
=1 aj—|—1 X — X — 0y

n

{€e1,...,en, ...} is obtained through the Gram Schmidt orthogonalization process on {B,}, called a Takenaka Malmquist system. We
will be working with the induced conjugate paring (-, -) on H?(R) and HP' (R), namely

[ee]

(F0,900) = / F()g09dx,

wheref € H?(R),g € H” (R), 1/p+1/p’ = 1.Furthermore, each e, in the systemisin H?, 1 < p < co,and {ey, ..., ep, ...} is orthogonal
with respect to the pairing between H? and H”'.

Theorem 3.1
Letay,...,ap, ... be aBlaschke sequence of points in the upper-half complex plane that dewnes a Blaschke product B(z) given in (1.2).
Then,for1 <p < o

HP(R) (| BOOHP(R) = (BHP )~ = span’{e,}52,;, (3.8)

where the closure is in the L? topology and (BH? )+ = {f € HP|({f,Bg) =0, ¥ g € H"}.

Proof
To prove the =rst identical relation of (3.8), we rst show

HP(R) () BHP(R) C (BH")*.
This is all clear. In fact, for f = Bﬁp € HP(R), h, € HP(R), we have, forany g = Bh,, hy € HP' (R)
(f.g) = (Bh,,Bhy) = (hp, hy) = 0.

Next, we show

HP(R) (| BRP(R) D (BH")™.

Copyright ~ 2015 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2016,39 1591 1598
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Let f € (BH”' (R))~. Then, for any function of the form Bhy, hy € H'(R),1 < p/ < oo
0 = (f,Bhy) = (Bf,hy).
From Lemma 4.1 (p.241, [12]), we know B = h € HP(R) or f = Bh. This completes the =st identical relation of (3.8).
Now, we prove the second identical relation of (3.8). Because 1 < p < o0, each e, isin (BHP')i. In fact, forany f = Bh,
B
(f.en) = (Bhp’: ep) =¢ rhp/ (etp) =0,

n—1

where c is a constant and B/B,—; is a Blaschke product with «,, as its zero. Because (BHF’/)i is closed in HP, we have

HP(R) ()(BH) > span’{e,}2,.

Next, we prove the opposite set inclusion. Let f € HP(R) () BHP. Thus, f = Bﬁp € HP. We are to show that f is in the LP-closure of
{en}S2.,. By Theorem 4.2 (Chapter VI, p.242, [12]), it sufces to show that if g € H”,1 < p’ < oo, such that (g, e,) = 0, then (g, f) = 0.
The assumption (g, e,) = 0 implies that g has all zeros of B together with the multiples. Then

{9,f) = (Bg,hy) = 0.
The proof is complete. O

When p = 2, we have

Corollary 3.2
H(R) = (H2 (R) (") BH2 (R)) ® BHA(R) = span{e,}2, ® BH2(R). (3.9)
We further have
Corollary 3.3
For1 < p < oo,5pan”{e,}52, = HP(R) if and only if the sequence {1, . .., an, ...} cannot be zeros of a Blaschke product.
Proof

If the sequence {a,}52, consists of the zeros, together with their multiples, of a Blaschke product, say B, then

=1

HP(R) ﬂ BHP(R) = span’{ep}o2.

Now the left-hand-side cannot be identical with HP(R) for not all functions in H?(R) are of the form Bh,. This shows that the closure of
the span is not HP(R).

On the other hand, suppose that the sequence {o,}52, cannot dewne a Blaschke product. In the case, if f € HP(R),1 < p < oo,
is orthogonal with all e,,n = 1,2, ..., then f has to be zero function. Otherwise, f would have zeros of the same multiples at «,,. This
shows that the sequence forms the zeros of a Blaschke product of f, contrary to the assumption. O

Let {o} and {Bx} respectively denote the zero sequence of F(z) = (1/27) fom ?(w)e"”zdz in the upper-half complex plane C* and
in the lower-half complex plane C~(they repeat according to its multiplicities). With Theorems 2.7 and 3.1, we have the following result.

Theorem 3.4
Letf € FH?[0,A]and g € LP(R),1 < p < oo, be non-zero functions. If the endpoints 0,A € supp/f\. Then, fg € FH?[0, A] if and only if

23z, = x — 7
gB{ € span” {e,,(x) = n 1—[ i Ine Ny, (3.10)
X—Zy [ X—Z
where {z} = {o} [J{B«} and B (x) is given in (2.5).
Proof _
By Theorem 2.7, we obtain that fg € FH?[0,A] ifand onlyifg € ¥ [H"’(R) N I;‘I}HP(IR)], where ¢ = /@b Y (x) and I} = /@x oL,
Because 0, A € suppf, thus, a; = a, = 0. By Theorem 3.1, the assertion is proved. O

Specially, if f and g are real functions, we have?(w) = ?(—a)), FZ) =F(z)and g = g+ + g+.By Theorems 2.6 and 3.1, we have

Corollary 3.5 R
Letf € FH?[—A,A]and g € [P(R),1 < p < oo, be non-zero real functions. If the endpoints —A, A € suppf. Then, fg € FH?[—A, A] i
and only if

23z, 1 X — Br
g+ € span’ {e,(x) = - |ne Ny,
{n x—ﬁngx—ﬁk

where { B} are the zero sequence of F(z) = (1/2x) ffA ?(a))e"wzdw in the lower-half plane.
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Notice that the space H?(R) () BH?(R) depends upon the point sets
E= {ak:ake(C+,k€N}.

Each o may repeat a number of times, where the time is identical with its multiple in the Blaschke product. So, we could rearrange
them and make the repetition explicit by setting

Thus, we can accordingly form another possible basis to characterize HP?(R) () BHP(R) for 1 < p < co.

Corollary 3.6
Let i be different zeros of B(z) given by (1.2) of which each has a multiple n. Then

HP(R)ﬂBHP(R):span” :j=1,---,n;k € Ny,

x—axy

Indeed, the Takenaka Malmquist system is the Gram Schmidt orthogonalization of the system given in Corollary 3.6. Hence, if g €
L2(R), we can also give an equivalent characterization of Theorem 3.4 in the frequency domain.

Corollary 3.7 R
Let f € FH?[0,A], g € L%(R) be non-zero functions and the endpoints 0,A € Suppf. Suppose {z;lk € N} be different zeros of
Fzy=(Q /2n)f:f(w)e’“’zda) in C \ R and each of which has a multiple ni. Then, fg € FH?[0, A] if and only if

g e spanP{u[(=1)w]w/e ™% :j=0,-- ,n — 1;k € N}, (3.11)

whered = —1if 3z, > 0andd = 0if 3z, < 0.

As application of Theorem 2.3, Corollary 2.4 and Theorem 2.4, next, we solve the phase retrieval problem. Namely, under what con-
ditions Band{f}and Band{g} both are contained in [0, A] for some positive A and |f| = |g|. Trivial solutions are g(t) = cf(t + a) and
g(t) = cf(—t + a) with |c| = 1and a € R. It has been showed that more complicated solutions could be obtained from any one of
them by ipping non-real zeros of its Laplace transform [3, 4, 14]. All these existing results rely on the Paley Wiener theorem and the
Hadamard factorization theorem. Comparatively, the backward shift invariant space method is more direct and explicit.

Corollary 3.8
Let f, g be non-zero functions, f € FH2[0,A], g = €™ e H>®(R). Then, fg € FH?[0, A] if and only if

?24—1 x—af
kT T Tk

g =™ | =5 .,
h |Oé/ + -Il X—O{k
ap 1%
where |¢;| = 1, a; is a nonpositive real number in [—a,,0] and {«;} is any subsequence of zero sequence {a} of F(z) =

1/2mw f(f/f\(w)e"‘"z in the upper-half plane.

Proof
The ‘if’ part is easy. Now, we prove the ‘only if’ part. Theorem 2.3 implies that fg € FH?[0,A] if and only if § €
H%(R) ﬂei"“XB;’(x)HOO(R). Because g € H°°(R) and |g| = 1, g is an inner function. We, at the same time, have

em*BY(x)g(x) € H®(R).
It follows that g(x) is a divisor of e%*BY(x). This completes the proof. O

By choosing g = I¥ = €%+ BY in Corollary 3.8, we obtain

Corollary 3.9
Let a non-zero function f € FH?[0, A]. Then, its boundary outer function Oy € FH?2[0, A].

By the same method, we have
Corollary 3.10
Let f, g be non-zero functions, f € FH2[0,A], g = €™ e H>°(R). Then, fg € FH2[0, A] if and only if

72 J—

i 1B +11 x— By

g = Czelale_[ #27 X ﬂl;'
g, B +1 k
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where |c;|] = 1, a, is some nonnegative real constant in [0,a] and {B;} is any subsequence of zero sequence {Bi} of
F(zy =1/27 fOA/f\(a))e""z in the lower-half plane.

Corollary 3.11
Let f, g be non-zero functions, f € FH2[0,A], g = €™ e L°°(R). Then, fg € FH?[0,A] if and only if

) o, +1 x—o 41 x—BL
o) = cem [ L S T
of |(¥k + 1| k B, ﬂk +1 k

where |c| = 1, ais some real constant in [—ay, ], {o; } is any subsequence of {o} and {8} is any subsequence of {f}.

Remark
Because f € FH?[A,B] and fg € FH?[A, B] if and only if h € FH?[0,B — A] and hg € FH?[0, B — A], where h(x) := e~ f(x). It is easy
to generalize the earlier discussions to f € FH?[A, B] and fg € FH?[A, B].
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