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In applications, one often deals with signals of finite energy whose Fourier transform has compact supports, viz, the so-called ban-
dlimited signals. If f 2 L2.R/ is bandlimited with supp Of � ŒA, B�, where A D inf Of and B D sup Of , then, we say that f has band ŒA, B�.
The band of f is denoted as Bandffg. We call B � A the bandwidth of f . For the purpose of this paper, we use FH2ŒA, B� D ff 2
L2.R/j Bandffg � ŒA, B�g for the set of the bandlimited signals whose bands are contained in ŒA, B�. Two classical problems of long
interest in a number of practical areas, including optics, antenna theory and physics, are formulated as follows: The first is to find all
functions g such that Bandffgg � Bandffg. The second is referred as phase retrieval problem, that is, to find all-pass filters ei�.x/ such that
Bandffei�.�/g � Bandffg. According to the descriptions of these two problems, the solution of the second problem is closely related to
that of the first problem. About the first problem, we learn that, if f and g 2 L2.R/with, respectively, bands ŒA, B� and ŒC, D�, then fg has
band ŒAC C, BC D� by the well-known Titchmarsh’s convolution theorem on compact supported distributions. This shows that if A, B
are finite numbers, then g cannot be of finite band. In order to get concrete and structural information of g, an efficient and classical
way is to make use of knowledge in complex analysis. The Paley–Winer theorem asserts that if f in L2.R/, then f 2 FH2Œ0, A�
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Lemma 2.1
Let a non-zero function f 2 FH2Œ0, A� and

F.z/ D
1

2�

Z A

0

bf .!/ej!zd!. (2.3)

Then, f .x/ has a factorization of the form

f .x/ D Of .x/I
u
f .x/, (2.4)

where Of .x/ is the boundary value of the outer function of F.z/

Of .x/ D exp

�
ln jf .x/j C

i

�
lim
�!0C

Z
jx�tj>�

1C tx

.x � t/.1C t2/
ln jf .t/jdt

�
,

Iu
f .x/ D ei.auxCbu/Bu

f .x/ is the boundary value of the inner function of F.z/, where au is some nonnegative real number in Œ0, A�, bu is a
real number and Bu

f .x/ is the boundary value of the Blaschke product formed by the zeros of F.z/ in the upper-half plane CC.

Remark
If f 2 FH2Œ0, A� and 0 2 suppbf , then the boundary inner function of f .x/ is Iu

f .x/ D eibu Bu
f .x/.

Lemma 2.2
Assume that f ¤ 0 and f 2 FH2Œ0, A�. The following result holds:

(i) If g 2 Hp.R/, 1 � p � 1 and fg 2 L2.R/, then suppbfg � Œ0,1/;
(ii) If g 2 Hp.R/, 1 � p � 1 and fg 2 L2.R/, then suppbfg � .�1, A�.

Proof

(i) If p D 1, then fg 2 H2.R/, and consequently, suppbfg � Œ0,1/. For 1 � p <1, there exists 0 < r <1 such that 1
2 C

1
p D

1
r , or,

equivalently, 1
2=r C

1
p=r D 1. It can be easily shown, by Hölder’s inequality and definition of the complex Hardy Hr.CC/ space,

fg 2 Hr.R/. Because fg 2 L2.R/, we have fg 2 H2.R/ (Corollary II. 4.3, [12]), and therefore suppbfg � Œ0,1/.
(ii) Because f 2 FH2Œ0, A�, we have eiAx f .x/ 2 FH2Œ0, A�. Let h.x/ :D eiAx f .x/g.x/. The result of (i) shows that suppbh � Œ0,1/.

Because .bfg/.!/ Dbh.A � !/, we have suppbfg � .�1, A�. The proof is finished.

Set Hp.R/ :D ff jf 2 Hp.R/g
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Set fl.x/ :D eiAx f .x/. Then, fl 2 FH2Œ0, A� if and only if f 2 FH2Œ0, A�. Invoking Theorem 2.3, we have

Corollary 2.4
Let f , g be non-zero functions, f 2 FH2Œ0, A�, g 2 Hp.R/, 1 � p � 1. Assume that fg 2 L2.R/. Then, fg 2 FH2Œ0, A� if and only if
g 2 Hp.R/

T
Il
f Hp.R/, where Il

f :D ei.al xCbl/Bl
f .x/ is the boundary inner function of fl.x/ :D eiAx f .x/, al is some nonnegative real number

in Œ0, A�, bl is a real number and Bl
f .x/ is the boundary value of the Blaschke product formed by the zeros of F.z/ in the lower-half plane

C� D fzjz D x � iy, y > 0g.

Note that

Fl.z/ :D .@�1fl/.z/ D
1

2�

Z A

0

bfl.!/e
i!zd! D

1

2�

Z A

0

bf .A � !/ei!z D eiAzF.Nz/.

Thus, the zeroes of Fl.z/ in the upper-half complex plane are the conjugates of those of F.z/ in the lower-half complex plane. We denote
by f˛kg and fˇkg the sets of the zeros of F.z/ in the upper-half complex plane CC and in the lower-half complex plane C� (they repeat
according to their respective multiples), respectively, where F.z/ is given by (2.3). Then, Bu

f in Theorem 2.3 and Bl
f in Corollary 2.4 are

respectively given by

Bu
f .x/ D

Y
˛k

j˛2
k C 1j

˛2
k C 1

�
x � ˛k

x � ˛k
, Bl

f .x/ D
Y
ˇk

jˇk
2
C 1j

ˇk
2
C 1

�
x � ˇk

x � ˇk
. (2.5)

Let f 2 FH2Œ0, A� be a non-zero function. By Theorem 2.3 and Corollary 2.4, we learn that if g 2 Hp.R/ or g 2 Hp.R/, 1 � p � 1,
a function g making fg 2 FH2Œ0, A� can be completely characterized by a backward shift invariant subspace Hp.R/

T
IHp.R/, where

I is an inner function related to f . Next, we extend the just obtained results to general functions g 2 Lp.R/, 1 � p � 1. Because the
operator H is bounded on Lp.R/, 1 < p <1, for any g 2 Lp.R/, we have the projectional Hardy spaces decomposition

g.x/ D
1

2
.gC.x/C g�.x//, (2.6)

where gC :D g C iHg and g� :D g � iHg with gC, g� 2 Hp.R/. They are, respectively, called the analytic signal and the dual analytic
signal of g. We first have

Lemma 2.5
Let f be non-zero, f 2 FH2Œ0, A�. There exists a function g 2 Lp.R/, 1 < p <1, such that fg 2 FH2Œ0, A� if and only if both the relations
fgC 2 FH2Œ0, A� and fg� 2 FH2Œ0, A� hold.

Proof
Suppose that fg 2 FH2Œ0, A�, then suppbfg � Œ0, A�. Because f 2 FH2Œ0, A�, gC 2 Hp.R/ and g� 2 Hp.R/, by Lemma 2.2, we have

supp.bfgC/ � Œ0,1/, supp.bfg�/ � .�1, A�.

Thus, .bfg/.!/ D .bfg�/.!/ D 0 for ! < 0 and .bfg/.!/ D .bfgC/.!/ for ! > A. These yield that fg� 2 FH2Œ0, A� and fgC 2 FH2Œ0, A�.
Conversely, if fgC 2 FH2Œ0, A� and fg� 2 FH2Œ0, A�, then fg D fgC C fg� 2 FH2Œ0, A�. The proof is complete.

In virtue of Theorem 2.3, Corollary 2.4 and Lemma 2.5, we obtain

Theorem 2.6
Let f , g be non-zero, f 2 FH2Œ0, A�, g 2 Lp.R/, 1 < p <1 and fg 2 L2.R/. Then, fg 2 FH2Œ0, A� if and only if

g� 2 Hp.R/
\

eiaux Bu
f .x/H

p.R/,

and

gC 2 Hp.R/
\

eial x Bl
f .x/H

p.R/,

where au and al are two nonnegative real constants in Œ0, A� and Bu
f .x/ and Bl

f .x/ are respectively given in (2.5).

Remark
Let f 2 FH2Œ0, A�. If 0 2 suppbf , then au D 0. If A 2 suppbf , then 0 2 suppbfl and al D 0.

The aforementioned theorem gives a characterization for the solutions g 2 Lp.R/, 1 < p < 1, to the band preserving problem.
It, however, does not cover the cases p D 1 and p D 1 due to the failure of the projectional Hardy spaces decomposition. The case
p D1 is directly related to the phase retrieval problem. In the succeeding section, we will treat the two exceptional cases as follows.

Theorem 2.7
Let f 2 FH2Œ0, A�, g 2 Lp.R/, 1 � p � 1 be non-zero functions and fg 2 L2.R/. Then, fg 2 FH2Œ0, A� if and only if

g 2 Iu
f Hp.R/

\
Il
f Hp.R/ D Iu

f

h
Hp.R/

\
Iu
f Il

f Hp.R/
i

, (2.7)

where Iu
f :D ei.auxCbu/Bu

f .x/ is the inner function of f and Il
f .x/ :D ei.al xCbl/Bl

f .x/ is the inner function of f1.x/ :D eiAx f .x/.
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Proof
Let h :D fg. Because f , h 2 FH2Œ0, A�, by Lemma 2.1, we have f D Of Iu

f and h D OhIh, where Iu
f is the inner function of f with

the form ei.auxCbu/Bu
f .x/ and Ih is the inner function of h. From the facts that g 2 Lp.R/, ln jhj D ln jfgj, ln jf j 2 L2

�
dt

1Ct2

�
, we have

Og :D Oh
Of
2 Hp.R/. Thus

g D
h

f
D

OgIh

Iu
f

2 Iu
f Hp.R/.

On the other hand, for hl.x/ :D eiAx h.x/, fl.x/ :D eiAx f .x/, there hold hl , fl 2 FH2Œ0, A�. Because ln jhlj D ln jhj, ln jflj D ln jf j. Then,
fl D Of Il

f and h D OhIl
h, where Il

f is the inner function of fl with the form ei.al xCbl/Bl
f .x/ and Il

h is the inner function of hl . Hence

g D
h

f
D

hl

fl
D

OhIl
h

Of Il
f

D
OgIl

h

Il
f

2 Il
f Hp.R/.

By combining with g 2 Iu
f Hp.R/, we have g 2 Iu

f Hp.R/
T

Il
f Hp.R/ D Iu

f

h
Hp.R/

T
Iu
f Il

f Hp.R/
i

.

Conversely, if g 2 Iu
f Hp.R/

T
Il
f Hp.R/, then there exist g1, g2 2 Hp.R/ such that g D Iu

f g1 and g D Il
f g2. Let fl.x/ :D eiAx f .x/. Because

f , fl 2 FH2Œ0, A� and fg 2 L2.R/, as assumed, we have fg D Of Iu
f Iu

f g1 D g1Of 2 H2.R/ and eiAx f .x/g.x/ D Ofl I
l
f Il

f g2 D Of1 g2 2 H2.R/.
Hence, suppbfg � Œ0, A� and fg 2 FH2Œ0, A�. The proof is complete.

3. Characterization of backward shift invariant subspace and its application to band
preserving and phase retrieval problems

From the previous analysis, we learn that the solutions g of the band preserving problem are related to backward shift invariant spaces
Hp.R/

T
IHp.R/, where I is some inner function. Under the condition f 2 FH2.Œ0, A�/, the related inner function I is with the simplified

form I.x/ D ei.axCb/B.x/, a � 0, b 2 R, B is a Blaschke product. To know more about the solutions g is to know more about the con-
struction of the backward shift invariant spaces. Many relevant references are in Russian and are for the disc case [8, 9, 13]. Specifically,
for the half-plane case, the literature on construction of Hp.R/

T
ei.axCb/B.x/Hp.R/ in terms of the system consisting of shifted Cauchy

kernels does not seem to be available. In this paper, we provide the proof for such construction on the upper-half plane.
When a D 0 and B.x/ of the boundary value of the Blaschke product given in (1.2). Let B0.x/ D 1.

Bn.x/ D
nY

jD1

j˛2
j C 1j

˛2
j C 1

�
x � ˛j

x � ˛j
, en.x/ D

p
2Im.˛n/

x � ˛n
Bn�1.x/, n � 1.

fe1, : : : , en, : : :g is obtained through the Gram–Schmidt orthogonalization process on fBng, called a Takenaka–Malmquist system. We
will be working with the induced conjugate paring h�, �i on Hp.R/ and Hp0.R/, namely

hf .x/, g.x/i D
1

�

Z 1
�1

f .x/g.x/dx,

where f 2 Hp.R/, g 2 Hp0.R/, 1=pC1=p0 D 1. Furthermore, each en in the system is in Hp, 1 < p <1, and fe1, : : : , en, : : :g is orthogonal
with respect to the pairing between Hp and Hp0 .

Theorem 3.1
Let ˛1, : : : ,˛n, : : : be a Blaschke sequence of points in the upper-half complex plane that defines a Blaschke product B.z/ given in (1.2).
Then, for 1 < p <1

Hp.R/
\

B.x/Hp.R/ D .BHp0/? D spanpfeng
1
nD1, (3.8)

where the closure is in the Lp topology and .BHp0/? D ff 2 Hpjhf , Bgi D 0, 8 g 2 Hp0g.

Proof
To prove the first identical relation of (3.8), we first show

Hp.R/
\

BHp.R/ � .BHp0/?.

This is all clear. In fact, for f D Bhp 2 Hp.R/, hp 2 Hp.R/, we have, for any g D Bhp0 , hp0 2 Hp0.R/

hf , gi D hBhp, Bhp0i D hhp, hp0i D 0.

Next, we show

Hp.R/
\

BHp.R/ 	 .BHp0/?.

Copyright © 2015 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2016, 39 1591–1598
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Let f 2 .BHp0.R//?. Then, for any function of the form Bhp0 , hp0 2 Hp0.R/, 1 < p0 <1

0 D hf , Bhp0i D hBf , hp0i.

From Lemma 4.1 (p.241, [12]), we know f B D h 2 Hp.R/ or f D Bh. This completes the first identical relation of (3.8).
Now, we prove the second identical relation of (3.8). Because 1 < p <1, each en is in .BHp0/?. In fact, for any f D Bhp0

hf , eni D hBhp0 , eni D c

�
B

Bn�1
hp0

�
.˛n/ D 0,

where c is a constant and B=Bn�1 is a Blaschke product with ˛n as its zero. Because .BHp0/? is closed in Hp, we have

Hp.R/
\
.BHp0/? 	 spanpfeng

1
nD1.

Next, we prove the opposite set inclusion. Let f 2 Hp.R/
T

BHp. Thus, f D Bhp 2 Hp. We are to show that f is in the Lp-closure of
feng
1
nD1. By Theorem 4.2 (Chapter VI, p.242, [12]), it suffices to show that if g 2 Hp0 , 1 < p0 < 1, such that hg, eni D 0, then hg, f i D 0.

The assumption hg, eni D 0 implies that g has all zeros of B together with the multiples. Then

hg, f i D hBg, hpi D 0.

The proof is complete.

When p D 2, we have

Corollary 3.2

H2.R/ D
�

H2.R/
\

BH2.R/
�
˚ BH2.R/ D span2feng

1
nD1 ˚ BH2.R/. (3.9)

We further have

Corollary 3.3
For 1 < p <1, spanpfeng

1
nD1 D Hp.R/ if and only if the sequence f˛1, : : : ,˛n, : : :g cannot be zeros of a Blaschke product.

Proof
If the sequence f˛ng

1
nD1 consists of the zeros, together with their multiples, of a Blaschke product, say B, then

Hp.R/
\

BHp.R/ D spanpfeng
1
nD1.

Now the left-hand-side cannot be identical with Hp.R/ for not all functions in Hp.R/ are of the form Bhp. This shows that the closure of
the span is not Hp.R/.

On the other hand, suppose that the sequence f˛ng
1
nD1 cannot define a Blaschke product. In the case, if f 2 Hp.R/, 1 < p < 1,

is orthogonal with all en, n D 1, 2, : : : , then f has to be zero function. Otherwise, f would have zeros of the same multiples at ˛n. This
shows that the sequence forms the zeros of a Blaschke product of f , contrary to the assumption.

Let f˛kg and fˇkg respectively denote the zero sequence of F.z/ D .1=2�/
R 2�

0
bf .!/ei!zdz in the upper-half complex plane CC and

in the lower-half complex planeC�(they repeat according to its multiplicities). With Theorems 2.7 and 3.1, we have the following result.

Theorem 3.4
Let f 2 FH2Œ0, A� and g 2 Lp.R/, 1 < p <1, be non-zero functions. If the endpoints 0, A 2 suppbf . Then, fg 2 FH2Œ0, A� if and only if

gBu
f 2 spanp

(
en.x/ D

p
2=zn

x � zn

nY
kD1

x � zk

x � zk
jn 2 N

)
, (3.10)

where fzkg D f˛kg
S
fˇkg and Bu

f .x/ is given in (2.5).

Proof
By Theorem 2.7, we obtain that fg 2 FH2Œ0, A� if and only if g 2 Iu

f

h
Hp.R/

T
Iu
f Il

f Hp.R/
i

, where Iu
f D ei.auxCbu/Bu

f .x/ and Il
f D ei.al xCbl/Bl

f .

Because 0, A 2 suppbf , thus, al D au D 0. By Theorem 3.1, the assertion is proved.

Specially, if f and g are real functions, we havebf .!/ Dbf .�!/, F.Nz/ D F.z/ and g D gC C gC. By Theorems 2.6 and 3.1, we have

Corollary 3.5
Let f 2 FH2Œ�A, A� and g 2 Lp.R/, 1 < p < 1, be non-zero real functions. If the endpoints �A, A 2 suppbf . Then, fg 2 FH2Œ�A, A� if
and only if

gC 2 spanp

(
en.x/ D

p
2=zn

x � ˇn

nY
kD1

x � ˇk

x � ˇk
jn 2 N

)
,

where fˇkg are the zero sequence of F.z/ D .1=2�/
R A
�A
Of .!/ei!zd! in the lower-half plane.

Copyright © 2015 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2016, 39 1591–1598

1
5

9
6

 10991476, 2016, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/m

m
a.3591 by C

ochrane M
acao, W

iley O
nline L

ibrary on [20/04/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



T. QIAN AND L. TAN

Notice that the space Hp.R/
T

BHp.R/ depends upon the point sets

E D
n
˛k : ˛k 2 CC, k 2 N

o
.

Each ˛k may repeat a number of times, where the time is identical with its multiple in the Blaschke product. So, we could rearrange
them and make the repetition explicit by setting

E D

8̂<̂
:˛1, � � � ,˛1„ ƒ‚ …

n1

,˛2, � � � ,˛2„ ƒ‚ …
n2

, � � � , � � �

9>=>; .

Thus, we can accordingly form another possible basis to characterize Hp.R/
T

BHp.R/ for 1 < p <1.

Corollary 3.6
Let ˛k be different zeros of B.z/ given by (1.2) of which each has a multiple nk . Then

Hp.R/
\

BHp.R/ D spanp
�

1

.x � ˛k/j
: j D 1, � � � , nk ; k 2 N

�
.

Indeed, the Takenaka–Malmquist system is the Gram–Schmidt orthogonalization of the system given in Corollary 3.6. Hence, if g 2
L2.R/, we can also give an equivalent characterization of Theorem 3.4 in the frequency domain.

Corollary 3.7
Let f 2 FH2Œ0, A�, g 2 L2.R/ be non-zero functions and the endpoints 0, A 2 Suppbf . Suppose fz0kjk 2 Ng be different zeros of
F.z/ D .1=2�/

R A
0
bf .!/ei!zd! in C nR and each of which has a multiple nk . Then, fg 2 FH2Œ0, A� if and only if

bg 2 spanpfuŒ.�1/d!�! je�i!z0k : j D 0, � � � , nk � 1; k 2 Ng, (3.11)

where d D �1 if =z0k > 0 and d D 0 if =z0k < 0.

As application of Theorem 2.3, Corollary 2.4 and Theorem 2.4, next, we solve the phase retrieval problem. Namely, under what con-
ditions Band{f} and Bandfgg both are contained in Œ0, A� for some positive A and jf j D jgj. Trivial solutions are g.t/ D cf .t C a/ and
g.t/ D cf .�tC a/ with jcj D 1 and a 2 R. It has been showed that more complicated solutions could be obtained from any one of
them by flipping non-real zeros of its Laplace transform [3, 4, 14]. All these existing results rely on the Paley–Wiener theorem and the
Hadamard factorization theorem. Comparatively, the backward shift invariant space method is more direct and explicit.

Corollary 3.8
Let f , g be non-zero functions, f 2 FH2Œ0, A�, g D ei�.x/ 2 H1.R/. Then, fg 2 FH2Œ0, A� if and only if

g.x/ D c1eia1x
Y
˛0k

˛0k
2
C 1

j˛0k
2
C 1j

�
x � ˛0k
x � ˛0k

,

where jc1j D 1, a1 is a nonpositive real number in Œ�au, 0� and f˛0kg is any subsequence of zero sequence f˛kg of F.z/ D
1=2�

R A
0
bf .!/ei!z in the upper-half plane.

Proof
The ‘if’ part is easy. Now, we prove the ‘only if’ part. Theorem 2.3 implies that fg 2 FH2Œ0, A� if and only if g 2

H1.R/
T

eiaux Bu
f .x/H

1.R/. Because g 2 H1.R/ and jgj D 1, g is an inner function. We, at the same time, have

eiaux Bu
f .x/g.x/ 2 H1.R/.

It follows that g.x/ is a divisor of eiaux Bu
f .x/. This completes the proof.

By choosing g D Iu
f D ei.auxCbu/Bu

f in Corollary 3.8, we obtain

Corollary 3.9
Let a non-zero function f 2 FH2Œ0, A�. Then, its boundary outer function Of 2 FH2Œ0, A�.

By the same method, we have

Corollary 3.10
Let f , g be non-zero functions, f 2 FH2Œ0, A�, g D ei�.x/ 2 H1.R/. Then, fg 2 FH2Œ0, A� if and only if

g.x/ D c2eia2x
Y
ˇ0k

jˇ0k
2
C 1j

ˇ0k
2
C 1

�
x � ˇ0k
x � ˇ0k

,

Copyright © 2015 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2016, 39 1591–1598
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where jc2j D 1, a2 is some nonnegative real constant in Œ0, al� and fˇ0kg is any subsequence of zero sequence fˇkg of
F.z/ D 1=2�

R A
0
bf .!/ei!z in the lower-half plane.

Corollary 3.11
Let f , g be non-zero functions, f 2 FH2Œ0, A�, g D ei�.x/ 2 L1.R/. Then, fg 2 FH2Œ0, A� if and only if

g.x/ D ceiax
Y
˛0k

˛0k
2
C 1

j˛0k
2
C 1j

�
x � ˛0k
x � ˛0k

Y
ˇ0k

jˇ0k
2
C 1j

ˇ0k
2
C 1

�
x � ˇ0k
x � ˇ0k

,

where jcj D 1, a is some real constant in Œ�au, al�, f˛0kg is any subsequence of f˛kg and fˇ0kg is any subsequence of fˇkg.

Remark
Because f 2 FH2ŒA, B� and fg 2 FH2ŒA, B� if and only if h 2 FH2Œ0, B � A� and hg 2 FH2Œ0, B � A�, where h.x/ :D e�iAx f .x/. It is easy
to generalize the earlier discussions to f 2 FH2ŒA, B� and fg 2 FH2ŒA, B�.
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