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Two-dimensional adaptive Fourier
decomposition

Tao Qian

Communicated by W. Sprössig

One-dimensional adaptive Fourier decomposition, abbreviated as 1-D AFD, or AFD, is an adaptive representation of a
physically realizable signal into a linear combination of parameterized Szegö and higher-order Szegö kernels of the con-
text. In the present paper, we study multi-dimensional AFDs based on multivariate complex Hardy spaces theory. We
proceed with two approaches of which one uses Product-TM Systems; and the other uses Product-Szegö Dictionaries. With
the Product-TM Systems approach, we prove that at each selection of a pair of parameters, the maximal energy may be
attained, and, accordingly, we prove the convergence. With the Product-Szegö dictionary approach, we show that pure
greedy algorithm is applicable. We next introduce a new type of greedy algorithm, called Pre-orthogonal Greedy Algo-
rithm (P-OGA). We prove its convergence and convergence rate estimation, allowing a weak-type version of P-OGA as
well. The convergence rate estimation of the proposed P-OGA evidences its advantage over orthogonal greedy algorithm
(OGA). In the last part, we analyze P-OGA in depth and introduce the concept P-OGA-Induced Complete Dictionary, abbre-
viated as Complete Dictionary . We show that with the Complete Dictionary P-OGA is applicable to the Hardy H2 space on
2-torus. Copyright © 2016 John Wiley & Sons, Ltd.

Keywords: Complex hardy space; rational orthogonal system; Takenaka–Malmquist system; greedy algorithm; several complex
variables; multiple Fourier series; systems identification; signal analysis; instantaneous frequency; Product-TM System;
Product-Szegö Dictionary; Induced Complete Dictionary

1. Preparation

We will give a brief introduction to the related background knowledge as well as the existing one-dimensional adaptive Fourier decom-
position (1-D AFD) theory. Denote by D the unit disc and C the complex plane. The present paper concentrates in the unit disc context.
There is a parallel theory for the upper-half plane context [1,2]. The space L2.@D/ can be expressed as the direct sum of the two relevant
boundary Hardy spaces, viz.,

L2.@D/ D H2
C.@D/

M
H2
�.@D/,

where H2
C
.@D/ and H2

�.@D/ consist of, respectively, the non-tangential boundary limits of the complex Hardy H2-functions inside and
outside the unit disc. The mentioned complex Hardy spaces of holomorphic functions inside and outside the unit disc are, respectively,
denoted by H2

˙
.D/. The non-tangential boundary limit mappings from H2

˙
.D/ to their boundary limit spaces H2

˙
.@D/ are isometric

isomorphisms. The closed subspaces H2
˙
.@D/ of L2.@D// are, in fact, the collections of the functions of the forms .f˙ iHf /=2˙c0=2, c0 2

C, respectively, where H is the Hilbert transformation of the context. Signals of the aforementioned forms are called analytic signals [3].
The Hilbert transformation operator for a simply-connected region � is related to the Plemelj formula of the context [4]. Let f be a

‘good’ holomorphic function in� such that it has non-tangential boundary limits almost everywhere on the boundary @�. By denoting
the boundary limit function as Qf D u C iv, where u and v are real-valued, we call v the Hilbert transform of u. Note that both u and v
are defined on @�. It is a fundamental result that functions in the complex Hardy spaces have non-tangential boundary limits almost
everywhere on the boundary. The Hilbert transforms of the square integrable functions on the unit disc are given by the following [5] :

Hu.t/ D
1

2�
lim
�!0

Z
jt�sj>�

cot

�
t � s

2

�
u.eis/ds

The Hilbert transformation has a Fourier multiplier representation:
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Hu.t/ D
1X

nD�1

.�isgn.n//cneint , u.t/ D
1X

nD�1

cneint ,
1X

nD�1

jcnj
2 <1,

where sgn.�/ is the signum function, being of the valueC1 or�1, respectively, for � > 0 or � < 0; and sgn.0/ D 0.
From now on, we assume that functions to be studied in L2.@D/ are real valued. Under such assumption, while both f and Hf are real

valued. Denote f˙ D 1
2 .f ˙ iHf /˙ c0=2. Because of the relation c�n D cn, we have

f D fC C f�, f D 2RefC � c0. (1.1)

We note that for any f 2 L2.@D/, not necessarily real valued, the Plemelj formula inside the disc is

lim
r!1�

1

2� i

Z
@D

f .�/

� � reit
d� D

1

2
.f .eit/C iHf .eit//C

c0

2
, a.e.,

and, in the L
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Bk.z/ D

p
1 � jakj2

1 � akz

k�1Y
lD1

z � al

1 � alz
, k D 1, 2, : : : ,

where a1, : : : , ak , : : : are any complex numbers in the open unit disc. The multiple product part of each Bk is a Blaschke product with
k � 1 zeros, being the product of the explicitly given .k � 1/ Möbius transforms, while the rest part is a normalized Szegö kernel,
being an element of the dictionary D, where we treat the complex number a as a parameter. Such systems have been well studied.
In particular, when all the ak ’s are identical with zero, fBkg reduces to a half of the Fourier system, viz., fzk�1g1kD1, a basis of the Hardy
spaces. It is known that for general parameters ak ’s, a system fBkg is a basis of the Hardy space Hp on the disc, 1 � p � 1, if and only if
the hyperbolic non-separability condition is satisfied, viz., [11]

1X
kD1

.1 � jakj/ D1 (1.4)

For p D 2, the TM system is an orthonormal basis of H2.D/ if and only if the condition (1.4) is met.
It is noted that writing in the form Bk.eit/ D �k.t/ei. k.t/C�k�1.t//, where eak .e

it/ D �k.t/ei k.t/, �k.t/ � 0, ei�k�1.t/ D
Qk�1

lD1
eit�al
1�al eit ,

we have �0k�1.t/ � 0 and 1 C  0k.t/ > 0 for all t 2 Œ0, 2��, k D 1, 2, : : : ,�00 D 0. In particular, if a1 D 0, then  0k.t/ C �
0
k�1.t/ � 0 for

all t and k D 1, 2, : : : [1]. A representation into a linear combination of such Bk ’s is a positive instantaneous frequency decomposition,
or alternatively, a mono-component (Hardy space functions of positive analytic phase derivative almost everywhere) decomposition
[1, 6, 7, 13–15]. In fact, it was the seeking for such decompositions that motivated 1-D AFD.

To make easy understanding to 2-D AFD delivered in Section 2 and also for the self-containing purpose, we now give an exposition
for the existing 1-D AFD [1, 2]. Let f belong to the Hardy space H2.D/. Set f1 D f . For any a1 2 D, we have the identity

f .z/ D hf1, ea1iea1 .z/C f2.z/
z � a1

1 � a1z
, (1.5)

with

f2.z/ D
f1.z/ � hf1, ea1iea1.z/

z�a1
1�a1z

.

Because of the reproducing kernel property of ea1 in H2.D/, we have

hf , ea1i D
p

1 � ja1j2f .a1/, and hence, f1.a1/ � hf1, ea1iea1 .a1/ D 0.

The last assertion implies that f2 2 H2.D/ that enables the recursive process in the sequel. We call the transformation from f1 to f2
the generalized backward shift via a1; and f2, the reduced remainder, being the generalized backward shift transform of f1 via a1. Such
terminology was motivated by the classical backward shift operator

S.f /.z/ D
1X

kD0

ckC1zk D
f .z/ � f .0/

z
,

where we assume f .z/ D
P1

kD0 ckzk . Noticing that f .0/ D hf , e0ie0.z/, S is identical with the just defined generalized backward shift
operator via 0.

Because of the orthogonality between the two terms on the right-hand side of (1.5) and the unimodular property of Möbius
transforms on the boundary, we have

kfk2 D khf1, ea1iea1k
2 C kf2

.�/ � a1

1 � a1.�/
k2 D jhf1, ea1ij

2 C kf2k
2.

We are to select a1 2 D that gives the term hf1, ea1iea1.z/ the maximal energy out of kfk2. Because of the reproducing kernel property
of ea, we have

jhf1, ea1ij
2 D .1 � ja1j

2/jf1.a1/j
2, (1.6)

and, hence, we are reduced to find a1 2 D such that

a1 D arg maxf.1 � jaj2/jf1.a/j
2 : a 2 Dg.

The existence of such maximal selection is evident ([1], it can also be referred to the proofs of Theorems 2.3 and 3.1 in the succeeding
text) and called Maximal Selection Principle. Having selected such a1, we repeat the same procedure to f2, and so on. After consecutive
n steps, we obtain

Copyright © 2016 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2016, 39 2431–2448
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f .z/ D
nX

kD1

hfk , eak iBk.z/C fnC1

nY
kD1

z � ak

1 � akz
,

where for k D 1, : : : , n,

ak D arg maxf.1 � jaj2/jfk.a/j
2 : a 2 Dg, (1.7)

and, for k D 2, : : : , nC 1,

fk.z/ D
fk�1.z/ � hfk�1, eak�1ieak�1.z/

z�ak�1
1�ak�1z

.

Because of the orthogonality, we have

kf �
nX

kD1

hfk , eak iBk.z/k
2 D kfk2 �

nX
kD1

jhfk , eak ij
2 D kfkC1k

2.

It can be shown that

lim
n!1

kfkC1k D 0

[1], and thus

f .z/ D
1X

kD1

hfk , eak iBk.z/. (1.8)

The decomposition of f given by (1.8) is called adaptive Fourier decomposition (AFD) of f .
The following relations are noted:

hfk , eak i D hgk , Bki D hf , Bki, (1.9)

where gk is the orthogonal standard remainder defined through

f D
k�1X
iD1

hf , BiiBi.z/C gk.z/. (1.10)

We also cite the useful relations

gk.z/ D fk.z/
k�1Y
lD1

z � al

1 � alz
, where fk D Sak�1 � � � Sa1 f .z/. (1.11)

To deal with the convergence rate issue, we define a particular subclass of functions [2]:

H2.D, M/ :D ff 2 H2.D/ : f D
1X

kD1

ckek , ek 2 D,
1X

kD1

jckj � Mg, 0 < M <1. (1.12)

We have the following [2] :

Theorem 1.1
Let D be the dictionary of the normalized Szegö kernels of H2.D/. Then for each f 2 H2.D, M/, decomposed by AFD, we have

k gk k�
M
p

k
.

We note that functions in the class H2.D, M/ may not be smooth on the unit circle. The aforementioned estimation in the energy
sense reflects the tolerance of AFD with non-smoothness.

Remark 1
There are variations of 1-D AFD (also called Core AFD in later references as it is the construction block of the other AFDs based on
maximal selections) of which we mention unwinding AFD [16], cyclic AFD [17], and higher-order-Szegö-kernel AFD [18]. Each of the
mentioned AFD variations has its own merits. In particular, unwinding and higher-order-Szegö-kernel AFDs are designed for decom-
pose signals of high frequencies. Cyclic AFD offers a conditional solution for the open problem of finding a rational Hardy space
function, whose degree does not exceed a pre-described integer n that best approximates a given Hardy space function [17].

Remark 2
One-dimensional adaptive Fourier decomposition and its variations have found significant applications to system identification and
signal analysis [19–22].

Copyright © 2016 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2016, 39 2431–2448

2
4
3
4

 10991476, 2016, 10, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/m

m
a.3649 by C

ochrane M
acao, W

iley O
nline L

ibrary on [20/04/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



T. QIAN

Remark 3
Any complete TM system with a1 D 0 gives rise to signal decompositions of positive frequencies. To sufficiently characterize a signal,
it is desirable to find the most suitable TM systems for the given signal. The suitability may be measured by the corresponding conver-
gence speed. It was the effort of gaining fast convergence that made AFD to share the same idea as greedy algorithm.

Remark 4
One-dimensional adaptive Fourier decomposition, as a matter of fact, is not the same as any existing greedy algorithm. In the last
section of this article, we will introduce a new greedy algorithm called Pre-orthogonal Greedy Algorithm (P-OGA) and will show that P-
OGA is identical with AFD in the unit disc context. Among the existing greedy algorithms, including the weak type ones, the one that
is most close to P-OGA is orthogonal greedy algorithm (OGA). In AFD, at the step n, a parameter value an can be repeatedly selected
with respect to the reduced remainder fn in order to have the maximal energy gain. On the other hand, OGA does not allow repeated
selections of a parameter with respect to the orthogonal standard remainder gn. In the unit disc context, OGA generates orthogonal
projections of the orthogonal standard remainder gn into linear span of

1,
1

1 � a1z
, : : : ,

1

1 � anz
, n D 1, 2, : : : ,

where all the ak ’s are distinct. In contrast, 1-D AFD, in accordance with (1.3), gives rise to orthogonal projections into linear spans of the
partial fraction systems

1, : : : , zm0�1,
1

1 � a1z
, : : : ,

1

.1 � a1z/m1
, : : : ,

1

1 � anz
, : : : ,

1

.1 � anz/mn
, n D 1, 2, : : : , (1.13)

where all the an are distinct and mn are the respective multiples. The latter is with the full strength of the related partial fractions,
and thus, the decomposition converges faster (also see Sections 2 and 3). Not only having a fast converging positive frequency
representation, AFD through its backward shift process automatically generates an orthogonal expansion without involving the G-S
orthogonalization process.

Remark 5
The Maximal Selection Principle may produce a sequence a1, : : : , an, : : : that does not satisfies (1.4). Such case corresponds to a remark-
able decomposition of the Hardy space. It is noted that the case is exactly when a Blaschke product �.z/ is definable with a1, : : : , ak , : : :,
being all its zeros including the multiples [5]. In such case, we have the space decomposition

H2 D spanfBkg ˚ �H2, (1.14)

where the closed set spanfBkg is a backward shift invariant subspace and �H2 a shift invariant subspace of the H2 space. In such case, f
belongs to the backward shift invariant space. Backward shift invariant subspaces have significant applications to phase and amplitude
retrieval problems and solutions of the Bedrosian equations, as well as to system identification [21]. We note that for the index range
1 < p <1, no matter whether (1.4) is met or not, the generalized system fBkg is a Schauder basis of the Lp.@D/-topological closure of
the spanfBkg [22].

Now, we discuss whether the idea of AFD can be generalized to multiple dimensions. AFD is based on complex analysis of one com-
plex variable. For a Euclidean space Rn, there exist essentially two formulations to bring in a complex structure, or a Cauchy theory. One
is the several complex variables formulation with the imbedding Rn � Cn. It changes a function of several real variables, f .x1, : : : , xn/, to
the corresponding one in several complex variables, f .z1, : : : , zn/. This makes sense at least when f is a polynomial. In such formulation,
f is said to be holomorphic if and only if f is holomorphic in each component variable zk , k D 1, 2, : : : , n. The other is the imbedding
into a Clifford algebra, with the quaternionic space as a particular case. The formulation extends the domain of a function f .x1, : : : , xn/

to a set of one more dimension, f .x0, x1, : : : , xn/. With each of those formulations, there exists a Hardy space theory. In the several
complex variables case, there exist Hardy spaces on tubes [23, 24]; while, for the Clifford algebra formulation, there exists a conjugate
harmonic system theory [23, 24], being alternative to the notion of Clifford Hardy space theory [25, 26]. The Clifford-quaternionic for-
mulation is more close to one complex variable: 1-D AFD has been extended or partially extended to the quaternionic and the Clifford
algebra contexts. The first paper along this line is [27] generalizing AFD to quaternions. The second paper is [28] dealing with general
Clifford algebras. Because of the non-commutativity obstacle, what one can do in Rn is a greedy-like algorithm. The AFD generaliza-
tions to those contexts are not in full because of the non-commutative obstacle. The third paper is [29] in which a scalar-valued phase
and its derivative are introduced and used to analyze signals of several real variables. The phase derivative concept has a close con-
nection with signal decomposition. The success of the generalizations to the quaternionic-Clifford algebra formulation lies on the fact
that one can perform algebraic computations to higher-dimensional vectors just like what one does to complex numbers. The incon-
venience of such formulation is that, except the two cases, viz., the whole hyper-planes and the real spheres in Rn, there exist very few
cases in which we could possibly use the quaternionic and Clifford algebra theory. For images defined in bounded regions, including
rectangular regions for instance, one runs into difficulty.

Copyright © 2016 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2016, 39 2431–2448
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For the several complex variables formulation, there is no direct and parallel method like what we use in the 1-D case to produce an
AFD theory. In particular, there is no backward shift mechanism, nor outer functions theory, nor Blaschke products either. The present
study offers two approaches for the several complex variables formulation of which one is phrased as ‘Product-TM Systems’; and the
other ‘Product-Szegö Dictionary’, as provided, respectively, in Sections 2 and 3. With the Product-TM System approach, like in the 1-D
theory, we prove a Maximal Selection Principle and then prove the corresponding convergence. With the Product-Szegö Dictionary
approach, we first show that OGA is applicable, that is, the maximal energy may be gained at each step. We next propose a new type
greedy algorithm in the abstract complex Hilbert space setting, called Pre-orthogonal Greedy Algorithm, abbreviated as P-OGA. Our
proofs of the corresponding convergence and convergence rate estimation are made to be more general by allowing the weak type
version. To be consistent with the literature, by ‘weak’, we mean to allow a tolerance constant � < 1 in the Maximal Selection Principle
(3.24). The new convergence rate estimation (Theorem 3.3) evidences that P-OGA is stronger than OGA). In Section 4, we further study
P-OGA in depth and raise a new concept Induced Complete Dictionary, or Complete Dictionary. We show that the concept is naturally
associated with P-OGA. We then prove the availability of P-OGA in the 2-torus context under the Complete Dictionary Induced by the
Product-Szegö Dictionary. Finally, we prove that in the classical 1-D unit disc context, under the Complete Dictionary Induced from the
Szegö Dictionary, P-OGA is identical with AFD.

2. 2-D AFD of the Product-TM System type

We will be working with two complex variables. For more several complex variables, there is a parallel theory.
Let a denote a finite or infinite sequence fang of complex numbers a1, a2, : : : in the unit disc D, and Ba the finite or infinite TM system

defined through a , that is,

Ba D fBfa1,:::,angg D fB
a
ng,

where

Ba
n.z/ D

p
1 � janj2

1 � anz

n�1Y
lD1

z � al

1 � alz
, n D 1, 2, : : :

When a is a finite sequence, a D fa1, : : : , aNg, we sometimes denote Ba by Ba
N.

Let T denote the boundary of the unit disc @D, and L2.T2/ the space of complex-valued functions on the 2-torus with finite energy,
where the energy is defined via the inner product

hf , gi D
1

4�2

Z �
��

Z �
��

f .eit , eis/g.eit , eis/dtds.

From the multiple trigonometric series theory, f 2 L2.T2/ if and only if

f .eit , eis/ D
X

�1<k,l<1

ckle
i.ktCls/ in the L2 � sense,

where X
�1<k,l<1

jcklj
2 <1, ckl D hf , ekli, ekl.t, s/ D eikteils.

Denote

H2.T2/ D ff 2 L2.T2/ : f .eit , eis/ D
X

k,l�0

ckle
i.ktCls/g.

In the sequel, if there is no confusion arising, we will denote L2.T2/ and H2.T2/, briefly and respectively, by H2 and L2. It can be easily
shown that H2 is a closed subspace of L2. Denote by H2.D2/, the class of complex holomorphic functions in the poly-disc D�D satisfying

sup
0<r,s<1

Z �
��

Z �
��

jf .reit , seiu/j2dtdu <1.

It may be shown that for any function f 2 H2.D2/, there holds

lim
z!eit ;w!eis

f .z, w/ exist for almost all .eit , eis/ 2 T2,

where both the limits z ! eit and w ! eis are in the non-tangential manner in their respective unit disc, and the limit function on T2

belongs to H2.T2/. The mapping that maps a function in f 2 H2.D2/ to its boundary limit function in H2.T2/ is one to one and onto,
and, as a matter of fact, an isometric isomorphism. For this reason, we sometimes use H2 for both H2.D2/ and H2.T2/. We note that T2

is not the topological boundary, but characteristic boundary of D2, which is part of the topological boundary. Data on the characteristic
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From now on, we work with a real-valued function f 2 L2. Define

fC,C
�

eit , eis
�
D
X

k,l�0

clkei.ktCls/,

fC,�
�

eit , eis
�
D

X
k,�l�0

clkei.ktCls/,

f�,C
�

eit , eis
�
D

X
�k,l�0

clkei.ktCls/,

f�,�
�

eit , eis
�
D

X
�k,�l�0

clkei.ktCls/.

Analogous with (1.1), we have

Theorem 2.1
Let f 2 L2 be real valued. Then

f
�

eit , eis
�
D 2Re

n
fC,C

o �
eit , eis

�
C 2Re

h
f
�

ei.�/, e�i.�/
�iC,C �

eit , e�is
�
� 2Re

n
FC
o �

eit
�
� 2Re

n
GC

o �
eis
�
C c00.

Proof
We have the relation

f
�

eit , eis
�
C F

�
eit
�
C G

�
eis
�
C c00 D fC,C

�
eit , eis

�
C fC,�

�
eit , eis

�
CCf�,C

�
eit , eis

�
C f�,�

�
eit , eis

�
,

where

F
�

eit
�
D

1

2�

Z �
��

f
�

eit , eis
�

ds, G
�

eis
�
D

1

2�

Z �
��

f
�

eit , eis
�

dt.

Therefore,

f
�

eit , eis
�
D fC,C

�
eit , eis

�
C fC,�

�
eit , eis

�
C f�,C

�
eit , eis

�
CCf�,�

�
eit , eis

�
� F

�
eit
�
� G

�
eis
�
� c00.

We note thath
f
�

ei.˙�/, ei.˙�/
�iC,C �

ei.˙t/, ei.˙s/
�
D f˙,˙

�
eit , eis

�
,
h

f
�

ei.˙�/, ei.��/
�iC,C �

ei.˙t/, ei.�s/
�
D f˙,�

�
eit , eis

�
.

Because f is real valued, fC,C and f�,� are a conjugate pair, and fC,� and f�,C are another conjugate pair. We have

fC,C C f�,� D 2Re
n

fC,C
o

and

fC,� C f�,C D 2Re
n

fC,�
o

.

Thus,

f
�

eit , eis
�
D2Re

n
fC,C

o �
eit , eis

�
C 2Re

n
fC,�

o �
eit , eis

�
� F

�
eit
�
� G

�
eis
�
� c00

D2Re
n

fC,C
o �

eit , eis
�
C 2Re

h
f
�

ei.�/, e�i.�/
�iC,C �

eit , e�is
�
� F

�
eit
�
� G

�
eis
�
� c00

D2Re
n

fC,C
o �

eit , eis
�
C 2Re

h
f
�

ei.�/, e�i.�/
�iC,C �

eit , e�is
�
� 2Re

n
FC
o
.eit/ � 2Re

n
GC

o �
eis
�
C c00.

The proof is complete.

We note that fC,C.eit , eis/, fC,�.eit , e�is/, f�,C.e�it , eis/, f�,�.e�it , e�is/ are functions in H2. The aforementioned result shows that
decomposition of a real-valued function f 2 L2 may be reduced to decomposition of a number of related functions in the Hardy space.

It may be easily shown that the Product-TM System is complete in the product space, if the two factor 1-D TM systems both are
complete in their respective spaces.

Theorem 2.2
If Ba

N and Bb
M are two finite TM systems, then Ba

N

N
Bb

M is an orthonormal system in L2.T2/. When Ba and Bb are two bases of H2.T/,
then Ba

N
Bb is a basis of H2.T2/.

Proof
The first assertion is obvious. To show the second, we note that holomorphic functions in two complex variables of the typePK

kD1 fk.z/gk.w/ are dense in H2.T2/. In fact, finite sums of multiple trigonometric series are dense in H2.T2/. IfBa andBb are two bases
of H2.T/, then finite linear combinations of functions in Ba

N
Bb are dense in the function class consisting of functions of the typePK

kD1 fk.z/gk.w/ and therefore also dense in H2.T2/. The proof is complete.

Copyright © 2016 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2016, 39 2431–2448
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T. QIAN

Denote, for f 2 H2.T2/,

Sn.f / D
X

1�k,l�n

hf , Ba
k ˝ Bb

l iB
a
k ˝ Bb

l D

nX
kD1

Dn.f /, Dn.f / D Sn.f / � Sn�1.f /, S0.f / D 0,

n D 1, 2, : : :

(2.15)

Note that Dn.f / is called the n-partial sum difference having 2n � 1 entries.

Theorem 2.3 (Maximal selection principle for Product-TM System)
For any f 2 H2 and previously fixed a1, : : : , an�1 and b1, : : : , bn�1 in D, there exist an, bn in D such that the associated

kDn.f /k
2 D

X
maxfk,lgDn

jhf , Ba
k ˝ Bb

l ij
2 (2.16)

attains its maximal value among all possible selections of an, bn inside the unit disc.

Proof
Let f 2 H2 be given and fixed. We separate the proof into two steps: (i) when janj ! 1 and jbnj ! 1, with a1, : : : , an�1 and b1, : : : , bn�1

being previously fixed, one has, uniformly in a1, : : : , an�1 and b1, : : : , bn�1,

lim
janj!1,jbnj!1

kDn.f /k
2 D 0;

and (ii) if one of janj and jbnj tends to 1, then (2.16) does not give rise to a maximal value either. We note that the first assertion deals
with the case where .an, bn/ tends to the characteristic boundary; while the second assertion deals with the boundary.

Now we show (i). Applying the Cauchy–Schwarz inequality to each of the 2n� 1 terms of the partial sum difference Dn, we conclude
that, for any 	 > 0, we can find a polynomial P such that

kDn.f � P/k2 � 	

uniformly in a1, : : : , an�1, an and b1, : : : , bn�1, bn. It is therefore reduced to showing that for any polynomial P,

lim
janj!1,jbnj!1

kDn.P/k
2 D 0.

Now, because of the expansion of Dn in (2.15), it suffices to show, under the limit procedure janj ! 1 and jbnj ! 1,

jhP, Ba
n ˝ Bb

l ij
2 ! 0, 1 � l � n (2.17)

and
jhP, Ba

k ˝ Bb
nij

2 ! 0, 1 � k < n. (2.18)

Denote by S.1/a the generalized partial backward shift operator via a for the variable z, and similarly S.2/b for the second variable w.
Because of (1.11), as well as the reproducing property of the product Szegö kernel ean ˝ ebn , we have

hP, Ba
n ˝ Bb

l i D

*
n�1Y
kD1

S.1/ak

l�1Y
kD1

S.2/bk
.P/, ean ˝ ebl

+

D
p

1 � janj2
p

1 � jblj2
n�1Y
kD1

S.1/ak

l�1Y
kD1

S.2/bk
.P/.an, bl/

!0, as janj ! 1,

(2.19)

where we use the fact that generalized backwards shifts of polynomials are still polynomials and thus are bounded in a neighborhood
of the closed unit disc. Similarly, we can show (2.18). We thus have

lim
janj!1,jbnj!1

kDn.P/k
2 D 0.

Now, we show (ii). Let janj ! 1. Because of (2.19), all terms in (2.17) are vanishing. The orthogonality between the 2n � 1 terms of
Dn.f / implies that for janj !



T. QIAN

that implies the Bessel inequality
nX

kD1

kDk.f /k
2 � kfk2.

As a consequence, we have

lim
n!1

1X
kDnC1

kDk.f /k
2 D 0.

This, in particular, is valid with maximal selections of .an, bn/ in accordance with Theorem 2.3. Moreover, under such selections, we have

Theorem 2.4
Let f 2 H2.T2/. For any k0 and previously fixed a1, b1, : : : , ak0�1, bk0�1, by selecting parameter pairs .ak0 , bk0/, .ak0C1, bk0C1/, : : : ,
according to the Maximal Selection Principle, we have

lim
n!1

kf � Sn.f /k
2 D 0.

In other words, in the L2-convergence sense,
f D lim

n!1
Sn.f /.

Proof
We prove this by contradiction. Assume that this is not true. Then

f D
1X

kD1

Dk.f /C h, h ¤ 0,

where h is in H2 and orthogonal with each Dk.f /. Hence,

khk2 D kfk2 �
1X

kD1

kDk.f /k
2 > 0.

By using the tensor type Cauchy formula for two complex variables, we have for any Qa, Qb in D,

hh, efQag ˝ efQbgi D
p

1 � jQaj2
q

1 � jQbj2h.Qa, Qb/

Therefore, there exist Qa, Qb in the unit disc such that hh, efQag ˝ efQbgi ¤ 0. Denote by

QX D spanf QBa ˝ QBbg,

where QBa is the TM system generalized by fQa, a1, : : : , an, : : :g under the given order; and likewise, for the notation QBb. The corresponding
n-partial sum difference is denoted QDn, involving Qa, Qb, a1, b1, : : : , an�1, bn�1.

Denote by h= QX the orthogonal projection of h into the subspace QX . In the sequel, we will continue to adopt this notation for
orthogonal projections. It is easy to show that

kh= QXk2 D ı > 0.

In fact,

kh= QXk22 �
1X

kD1

k QDkk
2
2 � k

QD1k
2
2 D jhh, eQa ˝ eQbij

2 > 0.

Set, for any integer M,

QXM D spanf QBa
M ˝

QBb
Mg and XM D spanfBa

M ˝ Bb
Mg,

where QBa
M and QBb

M are, respectively, the TM systems generalized by fQa, a1, : : : , aM�1g and fQb, b1, : : : , bM�1g.
Because

kh= QX � h= QXMk
2 D

1X
kDMC2

k QDkk
2 ! 0,

we have
lim

M!1
h= QXM D h= QX .

Now, find M so large that

kh= QXMk
2 > ı=2 and

					
1X

kDM

Dk.f /

					
2

< ı=8.

For such M, on one hand,

Copyright © 2016 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2016, 39 2431–2448
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T. QIAN

Proof
It suffices to show for any function Qg in the Hardy space there holds

lim
jaj!1� or jbj!1�

jhQg, ea ˝ ebij
2 D 0.

Because of the orthogonality, it suffices to show

lim
jaj!1� or jbj!1�

kQg � hQg, ea ˝ ebiea ˝ ebk D kQgk. (3.21)

Let Pr ˝ Ps be the tensor type Poisson kernel on the poly-disc [24], r, s 2 Œ0, 1/. For 	 > 0, we can choose r and s sufficiently close to 1
such that, owing to the L2-approximation property of the Poisson integral, we have

kQgk � kQg � hQg, ea ˝ ebiea ˝ ebk

� k.Pr ˝ Ps/ � ŒQg � hQg, ea ˝ ebiea ˝ eb�k

� k.Pr ˝ Ps/ � Qgk � jhQg, ea ˝ ebijk.Pr ˝ Ps/ � .ea ˝ eb/k

� .1 � 	/kQgk � kQgkk.Pr ˝ Ps/ � .ea ˝ eb/k.

(3.22)

Now, with the fixed r and s, because ea ˝ eb 2 H2, there follows, for z D reit , w D seiu,

.Pr ˝ Ps/ � .ea ˝ eb/.e
it , eiu/ D ea.z/eb.w/.

Then we have explicit computation

k.Pr ˝ Ps/ � .ea ˝ eb/k
2 D

1

.2�/2

Z 2�

0

1 � jaj2

j1 � areitj2
dt

Z 2�

0

1 � jbj2

j1 � bseiuj2
du

D
1 � jaj2

1 � r2jaj2
1 � jbj2

1 � s2jbj2
.

When jaj ! 1 or jbj ! 1, the inequality (3.22) gives

kQgk � kQg � hQg, ea ˝ ebiea ˝ ebk � .1 � 2	/kQgk.

This shows that the limit (3.21) holds. The proof is complete.
By implementing the aforementioned Maximal Selection Principle with the Product-Szegö Dictionary, under the general theory of

PGA [30, 32–34], one has, in the energy sense,

f D
1X

kD1

hgk , eak ˝ ebk ieak ˝ ebk .

It was shown that OGA is more optimal than PGA [30,33,34]. In the succeeding text, we propose a new variation of greedy algorithm
called P-OGA, which is truly stronger than OGA. Our formulation is in the general complex Hilbert space, allowing a weak type version
of P-OGA, called WP-OGA.

Let H be a complex Hilbert space and A a dictionary consisting of elements a 2 A satisfying keak D 1, spanA D H. Let

f D
n�1X
kD1

hf , BkiBk C gn, (3.23)

where fB1, : : : , Bkg is the result of the G-S orthogonalization process applied to the finite system fa1, : : : , akg, where for each k, ak is
selected to be one satisfying the pre-orthogonal �-Maximal Selection Principle

jhgk , Bkij � � supfjhgk , Ba
kij : a 2 Ag, � 2 .0, 1�, (3.24)

where fB1, : : : , Bk�1, Ba
kg is the orthogonalization of fa1, : : : , ak�1, ag. Such defined decomposition is called Weak Pre-orthogonal Greedy

Algorithm, abbreviated as WP-OGA. When � D 1, it is called Pre-orthogonal Greedy Algorithm, abbreviated as P-OGA. To see the dif-
ference between the just introduced with Weak Orthogonal Greedy Algorithm (WOGA, [30]), we recall that in the latter, the selected
ak satisfies

jhgk , akij � � supfjhgk , aij : a 2 Ag, � 2 .0, 1�. (3.25)

Copyright © 2016 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2016, 39 2431–2448
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T. QIAN

To summarize, both WP-OGA (P-OGA) and WOGA (OGA) use the orthogonal standard remainder, but WP-OGA first performs orthog-
onalization and then selects a dictionary element, while WOGA first selects a dictionary element and then performs orthogonalization.
To show that WP-OGA offers a better approximation than OGA at each step, we note that, with a selected ak 2 A, no matter how
jhgk , akij is close to supfjhgk , aij : a 2 Ag, we always have

supfjhgk , Ba
kij : a 2 Ag � jhgk , Bak

k ij.

The optimality of WP-OGA is also seen from the convergence rate estimation proved in Theorem 3.3.

As in OGA, we have, owing to the orthogonality,

hf , Bki D hgk , Bki.

The corresponding energy rule is again 					f �
nX

kD1

hf , BkiBk

					
2

D kfk2 �
nX

kD1

jhf , Bkij
2,

which implies the Bessel-type inequality
1X

kD1

jhf , Bkij
2 � kfk2.

Theorem 3.2
Let H be a complex Hilbert space with a dictionary A. For any f 2 H, with a sequence of consecutively selected a1, : : : , an, : : : from A
under the Pre-orthogonal �-Maximal Selection Principle , we have

f D
1X

kD1

hf , BkiBk ,

where for each k, the system fB1, : : : , Bkg is the result of the G-S orthonormalization process applied to fa1, : : : , akg.

The proof provided in the succeeding text directly depends on the Pre-orthogonal �-Maximal Selection Principle.

Proof
We prove the theorem by contradiction. Assume that f D

P1
kD1hf , BkiBk C h, h ¤ 0, h ? spanB, where B D spanfa1, : : : , an, : : :g.

Because spanA D H, there exists b 2 A such that hh, ebi ¤ 0. Denote Bb D fb, a1, : : : , an, : : :g. Obviously, h=spanBb ¤ 0. Let
kh=spanBbk D ı .> 0/. Denote Bn D fa1, : : : , ang,Bb

nC1 D fb, a1, : : : , ang. We have, by similar reasoning as before,

lim
n!1

h=spanBb
nC1 D h=spanBb.

Fix N large enough so that

kh=spanBb
nC1k > ı=2, and

						
1X

kDNC1

hf , BkiBk

						 < ı=2m,

where m will be determined later. Now, write

f D
NX

kD1

� C

1X
kDNC1

� C h

D

NX
kD1

� C gNC1.

On one hand, due to the orthogonality,

jhf , BNC1ij DjhgNC1, BNC1ij

Djh

1X
kDNC1

� , BNC1ij

�k

1X
kDNC1

� k

�ı=2m.

Copyright © 2016 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2016, 39 2431–2448
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T. QIAN

On the other hand, because fB1, : : : , BN, Bb
NC1g is the orthogonalization of fa1, : : : , aN, bg, we have

jhf , Bb
NC1ij D jhgNC1, Bb

NC1ij

D jhhC
1X

NC1

� , Bb
NC1ij

� jhh, Bb
NC1ij � jh

1X
NC1

� , Bb
NC1ij

D kh=spanBb
nC1k � jh

1X
NC1

� , Bb
NC1ij

� ı=2 � ı=2m

D
.2m�1 � 1/ı

2m
.

Therefore,

jhf , BNC1ij= supfjhf , Ba
NC1ij : a 2 Ag < 1

2m�1 � 1
.

Now choosing m so large that 1
2m�1�1

< �, we arrive at a contradiction. The proof is complete.
To obtain the convergence rate estimation, we first give some remarks. Assume that we have fB1, : : : , Bn�1g as the orthogonalization

of fa1, : : : , an�1g. When we have the next element an to be added to, and to be made orthogonal with the former B1, : : : , Bn�1, what we
do is to expand an into the linear expansion

Pn�1
kD1han, BkiBk , and then find the nth orthogonal standard remainder an�

Pn�1
kD1han, BkiBk

given by (3.23). This process gives the projection of an into the orthogonal complement space of the linear space spanfa1, : : : , an�1g.
We denote such projection operator by Qfa1,:::,an�1g. That is,

Qfa1,:::,an�1g.an/ D an �

n�1X
kD1

han, BkiBk , Bn D
Qfa1,:::,an�1g.an/

kQfa1,:::,an�1g.an/k
.

In the succeeding text, we will sometimes abbreviate Qfa1,:::,en�1g as Qn�1.
On the other hand, we also have

gn D Qfa1,:::,an�1g.f /, (3.26)

where gn is the nth orthogonal standard remainder of f with respect to the orthonormal system fB1, : : : , Bn�1g defined by (3.23).
The relation we want to cite is that for any two functions f and g in the complex Hilbert space, we have hf , Qfa1,:::,an�1g.g/i D
hQfa1,:::,en�1g.f /, gi due to the fact that both the left and right hands are identical with hf , gi �

Pn�1
kD1hf , BkihBk , gi.

By the just mentioned property of the projection operator, when kQfa1,:::,an�1g.a/k ¤ 0, we have

jhgn, Ba
nij D

1

kQfa1,:::,an�1g.a/k
jhQfa1,:::,an�1g.f /, Qa1,:::,an�1.a/ij

D
1

kQfa1,:::,an�1g.a/k
jhQ2
fa1,:::,an�1g

.f /, aij

D
1

kQfa1,:::,an�1g.a/k
jhQfa1,:::,an�1g.f /, aij

D
1

kQfa1,:::,an�1g.a/k
jhgn, aij.

(3.27)

Set, for any a1, : : : , an�1 in A, and any a 2 A,

rn.a/ D kQfa1,:::,an�1g.a/k. (3.28)

We have rn.a/ � 1. The case rn.a/ D 1 is exactly when a is orthogonal with spanfa1, : : : , an�1g. The case rn.a/ D 0 is exactly when
a 2 spanfa1, : : : , an�1g. Weak Orthogonal �-Maximal Selection Principle, however, does not allow such selection. Therefore, for the
allowed cases, there always

jhgn, Ba
nij D

1

rn.a/
jhgn, aij � jhgn, aij.

Now, as in [33] (also see [2]), we introduce

Copyright © 2016 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2016, 39 2431–2448
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T. QIAN

H2.A, M/ D ff 2 H2 : f D
1X

kD1

ckak ,
1X

kD1

jckj � Mg.

We have the following:

Theorem 3.3
Let f 2 H2.A, M/. Denote by gm the orthogonal standard remainder of f with respect to the orthogonalization fB1, : : : , Bm�1g of
the consecutive selected fa1, : : : , am�1g under the Pre-orthogonal �-Maximal Selection Principle. With Rm D maxfr1, : : : , rmg, rn D

supkfrn.bk/g, where rn.bk/, depending on a1, : : : , an�1 and bk , is defined as in (3.28), we have

kgmk �
RmM

�

1
p

m
.

We also need the following result [33]

Lemma 3.4
Let fdng

m
nD1 be an m-tuple of non-negative numbers satisfying

d1 � Am, dnC1 � dn

�
1 �

dn

Am

�
.

Then there holds

dm �
Am

m
.

When the aforementioned relations hold for all integers m and all n � m, and Am � A, then we have, for all m,

dm �
A

m
.

Proof of Theorem 3.3
Assume that f D

P
k ckbk with

P
k jckj � M. We first note that

kgmC1k
2 D kgmk

2 � jhgm, Bmij
2.

Next, we have a chain of equality and inequality relations: For each n � m,

jhgn, Bnij � � sup
a2A
jhgn, Ba

nij

� � sup
k
jhgn, Bbk

n ij

D � sup
k

jhgn, bkij

rn.bk/

�
�

rn
sup

k
jhgn, bkij

�
�

rnM
jhgn,

X
k

ckbkij

D
�

rnM
jhgn, f ij

�
�

RmM
kgnk

2



T. QIAN

 10991476, 2016, 10, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/m

m
a.3649 by C

ochrane M
acao, W

iley O
nline L

ibrary on [20/04/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



 10991476, 2016, 10, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/m

m
a.3649 by C

ochrane M
acao, W

iley O
nline L

ibrary on [20/04/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



T. QIAN

lim
jaj!1 or jbj!1

kg � hg, N.a, k/@k
aea ˝ N.b, l/@l

b
ebiN.a, k/@k

aea ˝ N.b, l/@l
b

ebk
2 D 0. (4.38)

Performing what is carried out in (3.22), we are reduced to showing

lim
jaj!1 or jbj!1

k.Pr ˝ Ps/ � .N.a, k/@k
aea ˝ N.b, l/@l

b
eb/k ! 0. (4.39)

Now, with the fixed 0 < r < 1 and 0 < s < 1, because N.a, k/@k
aea ˝ N.b, l/@l

b
eb 2 H2, there follows, for z D reit , w D seiu,

.Pr ˝ Ps/ � .N.a, k/@k
aea ˝ N.b, l/@l

b
eb/.e

it , eiu/ D .N.a, k/@k
aea/.z/.N.b, l/@l

b
eb/.w/.

With explicit computation, we have			.Pr ˝ Ps/ � .N.a, k/@k
aea ˝ N.b, l/@l

b
eb/
			2
D

N.a, k/

N.ra, k/

N.b, l/

N.sb, l/
! 0, as jaj ! 1 or jbj ! 1.

With the relation (3.26), the same reasoning gives

1 D
			N.a, k/@k

aea ˝ N.b, l/@l
b

eb

			2
D

n�1X
kD1

ˇ̌̌D
N.a, k/@k

aea ˝ N.b, l/@l
b

eb, Bk

Eˇ̌̌2
C
			Qn�1

�
N.a, k/@k

aea ˝ N.b, l/@l
b

eb

�			2
.

By invoking (4.36),

lim
jaj!1 or jbj!1

n�1X
kD1

ˇ̌̌D
N.a, k/@k

aea ˝ N.b, l/@l
b

eb, Bk

Eˇ̌̌2
D 0.

We hence obtain (4.37). Therefore, we have proven (4.35). Next, we indicate that we can always select an element of fD2, being a
linear combination of finitely many directional derivatives of certain orders of the elements in D2, that gives rise to the maximum of
jhgn, Ba

nij, a 2 eA
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