(. . .) D : 10.1002/ .3649 I : 42A50; 32A30; 32A35; 46₁ 15

Two-dimensional adaptive Fourier decomposition

Tao Qian

Communicated by W. Sprössig

One-dimensional adaptive Fourier decomposition, abbreviated as 1-D AFD, or AFD, is an adaptive representation of a physically realizable signal into a linear combination of parameterized Szegö and higher-order Szegö kernels of the context. In the present paper, we study multi-dimensional AFDs based on multivariate complex Hardy spaces theory. We proceed with two approaches of which one uses Product-TM Systems; and the other uses Product-Szegö Dictionaries. With the Product-TM Systems approach, we prove that at each selection of a pair of parameters, the maximal energy may be attained, and, accordingly, we prove the convergence. With the Product-Szegö dictionary approach, we show that pure greedy algorithm is applicable. We next introduce a new type of greedy algorithm, called Pre-orthogonal Greedy Algorithm (P-OGA). We prove its convergence and convergence rate estimation, allowing a weak-type version of P-OGA as well. The convergence rate estimation of the proposed P-OGA evidences its advantage over orthogonal greedy algorithm (OGA). In the last part, we analyze P-OGA in depth and introduce the concept P-OGA-Induced Complete Dictionary, abbreviated as Complete Dictionary. We show that with the Complete Dictionary P-OGA is applicable to the Hardy H^2 space on 2-torus. Copyright © 2016 John Wiley & Sons, Ltd.

1. Preparation

Department of Mathematics, University of Macau, Macao, China

^{*} Correspondence to: Tao Qian, Department of Mathematics, University of Macau, Macao, China. E-mail: fsttg@umac.mo

$$Hu(t) = \sum_{n=-\infty}^{\infty} (-i \quad (n))c_n e^{int}, \quad u(t) = \sum_{n=-\infty}^{\infty} c_n e^{int}, \quad \sum_{n=-\infty}^{\infty} |c_n|^2 < \infty,$$

$$f = f^{+} + f^{-}, f = 2 \cdot f^{+} - c_{0}.$$
 (1.1)

 $f \in L^2(\partial \mathbf{D}),$

$$_{r\rightarrow 1-}\frac{1}{2\pi i}\int_{\partial \mathbf{D}}\frac{f(\zeta)}{\zeta-re^{it}}d\zeta=\frac{1}{2}(f(e^{it})+iHf(e^{it}))+\frac{c_0}{2}, \qquad .\ .\ .$$

., ... L

$$B_k(z) = \frac{\sqrt{1-|a_k|^2}}{1-\overline{a}_k z} \prod_{l=1}^{k-1} \frac{z-a_l}{1-\overline{a}_l z}, k=1,2,\ldots,$$

$$\sum_{k=1}^{\infty} (1 - |a_k|) = \infty \tag{1.4}$$

$$f(z) = \langle f_1, e_{a_1} \rangle e_{a_1}(z) + f_2(z) \frac{z - a_1}{1 - \overline{a}_1 z}, \tag{1.5}$$

٠. - ،

$$f_2(z) = \frac{f_1(z) - \langle f_1, e_{a_1} \rangle e_{a_1} \langle e_{a_1} \rangle}{\frac{z - a_1}{1 - \overline{a}_1 z}}.$$

B, \cdot , e_{a_1} $H^2(\mathbf{D})$, , ,

$$\langle f, e_{a_1} \rangle = \sqrt{1 - |a_1|^2} f(a_1),$$
 , $f_1(a_1) - \langle f_1, e_{a_1} \rangle e_{a_1}(a_1) = 0.$

 $f_2 \in H^2(\mathbf{D})$ $f_1 = f_2$ generalized backward shift via a_1 ; f_2 , reduced remainder, the generalized backward shift transform $f_1 = a_1$.

$$S(f)(z) = \sum_{k=0}^{\infty} c_{k+1} z^k = \frac{f(z) - f(0)}{z},$$

 $f(z) = \sum_{k=0}^{\infty} c_k z^k. \qquad f(0) = \langle f, e_0 \rangle e_0(z), S$

$$||f||^2 = ||\langle f_1, e_{a_1} \rangle e_{a_1}||^2 + ||f_2 \frac{(\cdot) - a_1}{1 - \overline{a}_1(\cdot)}||^2 = |\langle f_1, e_{a_1} \rangle|^2 + ||f_2||^2.$$

 $\langle f_1, e_{a_1} \rangle e_{a_1}(z) \qquad \qquad \langle f_1, e_{a_1} \rangle e_{a_1}(z)$

$$|\langle f_1, e_{a_1} \rangle|^2 = (1 - |a_1|^2)|f_1(a_1)|^2,$$
 (1.6)

 $a_1 \in \mathbf{D}$

$$a_1 = \{(1-|a|^2)|f_1(a)|^2 : a \in \mathbf{D}\}.$$

Maximal Selection Principle. $(1, \dots, a_1, \dots, a_1, \dots, a_1, \dots, a_n, \dots,$

1.0 Common Action Common Library for rules of use; On Inine Library on [2004/2023]. See the Terms and Conditions (https://onlinelibrary.wiley.com/rems-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons Licenses

$$f(z) = \sum_{k=1}^{n} \langle f_k, e_{a_k} \rangle B_k(z) + f_{n+1} \prod_{k=1}^{n} \frac{z - a_k}{1 - \overline{a}_k z},$$

 $k=1,\ldots,n,$

$$a_k = \{(1 - |a|^2)|f_k(a)|^2 : a \in \mathbf{D}\},\tag{1.7}$$

 $, \quad k=2,\ldots,n+1,$

$$f_k(z) = \frac{f_{k-1}(z) - \langle f_{k-1}, e_{a_{k-1}} \rangle e_{a_{k-1}}(z)}{\frac{z - a_{k-1}}{1 - \overline{a_{k-1}}z}}.$$

$$||f - \sum_{k=1}^{n} \langle f_k, e_{a_k} \rangle B_k(z)||^2 = ||f||^2 - \sum_{k=1}^{n} |\langle f_k, e_{a_k} \rangle|^2 = ||f_{k+1}||^2.$$

$$_{n\to\infty}\|f_{k+1}\|=0$$

1, ...

$$f(z) = \sum_{k=1}^{\infty} \langle f_k, e_{a_k} \rangle B_k(z). \tag{1.8}$$

f (1.8) , f , f (AFD) f.

$$\langle f_k, e_{a_k} \rangle = \langle g_k, B_k \rangle = \langle f, B_k \rangle,$$
 (1.9)

 \ldots , g_k , orthogonal standard remainder \ldots , \ldots , \cdots

$$f = \sum_{i=1}^{k-1} \langle f, B_i \rangle B_i(z) + g_k(z).$$
 (1.10)

, ,,,,, , , , , , ,

$$g_k(z) = f_k(z) \prod_{l=1}^{k-1} \frac{z - a_l}{1 - \overline{a}_l z}, \qquad f_k = S_{a_{k-1}} \cdots S_{a_1} f(z).$$
 (1.11)

2:

$$H^{2}(\mathcal{D}, M) := \{ f \in H^{2}(D) : f = \sum_{k=1}^{\infty} c_{k} e_{k}, e_{k} \in \mathcal{D}, \sum_{k=1}^{\infty} |c_{k}| \le M \}, \quad 0 < M < \infty.$$
 (1.12)

2:

Theorem 1.1

$$H^2(D)$$
. $H^2(D)$.

$$\parallel g_k \parallel \leq \frac{M}{\sqrt{k}}.$$

Remark 1

Remark 2

19 22 .

Remark 3

Remark 4

Pre-orthogonal Greedy Algorithm (P-OGA)

AFD

A

A

A

A f_n g_n g_n

1,
$$\frac{1}{1-\overline{a}_1z}$$
, ..., $\frac{1}{1-\overline{a}_nz}$, $n=1,2,...$

 a_{k} , a_{k} , a

$$1, \ldots, z^{m_0-1}, \frac{1}{1-\overline{a}_1 z}, \ldots, \frac{1}{(1-\overline{a}_1 z)^{m_1}}, \ldots, \frac{1}{1-\overline{a}_n z}, \ldots, \frac{1}{(1-\overline{a}_n z)^{m_n}}, \quad n = 1, 2, \ldots,$$
 (1.13)

 a_n a_n

$$H^2 = \overline{\{B_k\}} \oplus \phi H^2, \tag{1.14}$$

backward shift invariant subspace ϕH^2 shift invariant subspace H^2 , f $\{B_k\}$ $B \qquad \qquad \vdots \qquad \vdots \qquad \qquad \vdots \qquad \vdots \qquad \qquad \vdots \qquad \vdots$ $\{B_k\}$ 22. $\mathsf{R}^n, \qquad \mathsf{R}^n \subset \mathsf{C}^n, \qquad \mathsf{R}^n \subset \mathsf{C}^n \subset \mathsf{R}^n$ f $z_k, k =$ $f(x_0, x_1, ..., x_n).$ $z_k, k =$ $z_k, k =$ $z_k, k =$ $z_k, k = 1, 2, \ldots, n$ 23, 24 ,

2. 2-D AFD of the Product-TM System type

 $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{b}_n$ $\mathbf{b}_1, \mathbf{a}_2, \dots, \mathbf{b}_n$ \mathbf{b}_n \mathbf{b}_n \mathbf{c}_n \mathbf{c}_n

$$\mathcal{B}^{\mathbf{a}} = \{B_{\{a_1,...,a_n\}}\} = \{B_n^{\mathbf{a}}\},\$$

. . .

$$B_n^{\mathbf{a}}(z) = \frac{\sqrt{1-|a_n|^2}}{1-\overline{a}_n z} \prod_{l=1}^{n-1} \frac{z-a_l}{1-\overline{a}_l z}, \quad n=1,2,\ldots$$

 $\mathbf{a} \qquad , \qquad , \quad \mathbf{a} = \{a_1, \dots, a_N\}, \qquad , \qquad , \qquad \mathcal{B}^{\mathbf{a}} \qquad \mathcal{B}^{\mathbf{a}}_{N}.$ $\mathbf{D}, \qquad L^2(\mathbf{T}^2) \qquad , \qquad , \qquad , \qquad 2 = \cdots$

$$\langle f,g\rangle=\frac{1}{4\pi^2}\int_{-\pi}^{\pi}\int_{-\pi}^{\pi}f(e^{it},e^{is})\overline{g}(e^{it},e^{is})dtds.$$

F ,, $f \in L^2(\mathbf{T}^2)$

$$f(e^{it}, e^{is}) = \sum_{-\infty < k, l < \infty} c_{kl} e^{i(kt+ls)} \qquad L^2 - \ldots,$$

. . .

$$\sum_{-\infty < k, l < \infty} |c_{kl}|^2 < \infty, \quad c_{kl} = \langle f, e_{kl} \rangle, \quad e_{kl}(t, s) = e^{ikt} e^{ils}.$$

D

$$H^2(\mathsf{T}^2) = \{ f \in L^2(\mathsf{T}^2) : f(e^{it}, e^{is}) = \sum_{k, l > 0} c_{kl} e^{i(kt + ls)} \}.$$

$$\int\limits_{0 < r, s < 1}^{\pi} \int\limits_{-\pi}^{\pi} |f(re^{it}, se^{iu})|^2 dt du < \infty.$$

 $f \in H^2(\mathbf{D}^2),$

$$z \rightarrow e^{it}; w \rightarrow e^{is}$$
 $f(z, w)$. . . $(e^{it}, e^{is}) \in \mathsf{T}^2$,

. D(D) 7508146.279(0 D10069(0 D10069(70.02140186.97179.956

$$f^{+,+}(e^{it},e^{is}) = \sum_{k,l\geq 0} c_{lk}e^{i(kt+ls)},$$

$$f^{+,-}(e^{it},e^{is}) = \sum_{k,-l\geq 0} c_{lk}e^{i(kt+ls)},$$

$$f^{-,+}(e^{it},e^{is}) = \sum_{-k,l\geq 0} c_{lk}e^{i(kt+ls)},$$

$$f^{-,-}(e^{it},e^{is}) = \sum_{-k,-l\geq 0} c_{lk}e^{i(kt+ls)}.$$

A - (1.1), . . .

Theorem 2.1

$$f(e^{it}, e^{is}) = 2 \cdot \left\{f^{+,+}\right\}(e^{it}, e^{is}) + 2 \cdot \left[f(e^{i(\cdot)}, e^{-i(\cdot)})\right]^{+,+}(e^{it}, e^{-is}) - 2 \cdot \left\{F^{+}\right\}(e^{it}) - 2 \cdot \left\{G^{+}\right\}(e^{is}) + c_{00}.$$

Proof

.

$$f(e^{it}, e^{is}) + F(e^{it}) + G(e^{is}) + c_{00} = f^{+,+}(e^{it}, e^{is}) + f^{+,-}(e^{it}, e^{is}) + + f^{-,+}(e^{it}, e^{is}) + f^{-,-}(e^{it}, e^{is}),$$

٠.,,

$$F\left(e^{it}\right) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f\left(e^{it}, e^{is}\right) ds, \qquad G\left(e^{is}\right) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f\left(e^{it}, e^{is}\right) dt.$$

$$f(e^{it}, e^{is}) = f^{+,+}(e^{it}, e^{is}) + f^{+,-}(e^{it}, e^{is}) + f^{-,+}(e^{it}, e^{is}) + + f^{-,-}(e^{it}, e^{is}) - F(e^{it}) - G(e^{is}) - C_{00}.$$

. - . - . -

$$\left[f\left(e^{i(\pm\cdot)},e^{i(\pm\cdot)}\right)\right]^{+,+}\left(e^{i(\pm t)},e^{i(\pm s)}\right)=f^{\pm,\pm}\left(e^{it},e^{is}\right),\quad \left[f\left(e^{i(\pm\cdot)},e^{i(\mp\cdot)}\right)\right]^{+,+}\left(e^{i(\pm t)},e^{i(\mp s)}\right)=f^{\pm,\mp}\left(e^{it},e^{is}\right).$$

 $\mathsf{B}_{\mathsf{c}} \to \mathsf{c}_{\mathsf{c}} \mathsf{f} \quad , \qquad \mathsf{c}_{\mathsf{c},\mathsf{c}} \mathsf{f}^{+,+} = \mathsf{c}_{\mathsf{c}} \mathsf{f}^{-,-} \quad , \qquad \mathsf{c}_{\mathsf{c}} \mathsf{c}_{\mathsf{c}} \mathsf{f}^{+,-} = \mathsf{c}_{\mathsf{c}} \mathsf{f}^{-,+} \quad , \qquad \mathsf{c}_{\mathsf{c},\mathsf{c}} = \mathsf{c}_{\mathsf{c}} \mathsf{c$

$$f^{+,+} + f^{-,-} = 2 \setminus \{f^{+,+}\}$$

-

$$f^{+,-} + f^{-,+} = 2$$
, $\{f^{+,-}\}$.

. . . ,

$$f(e^{it}, e^{is}) = 2 \cdot \left\{f^{+,+}\right\} (e^{it}, e^{is}) + 2 \cdot \left\{f^{+,-}\right\} (e^{it}, e^{is}) - F(e^{it}) - G(e^{is}) - c_{00}$$

$$= 2 \cdot \left\{f^{+,+}\right\} (e^{it}, e^{is}) + 2 \cdot \left[f\left(e^{i(\cdot)}, e^{-i(\cdot)}\right)\right]^{+,+} (e^{it}, e^{-is}) - F(e^{it}) - G(e^{is}) - c_{00}$$

$$= 2 \cdot \left\{f^{+,+}\right\} (e^{it}, e^{is}) + 2 \cdot \left[f\left(e^{i(\cdot)}, e^{-i(\cdot)}\right)\right]^{+,+} (e^{it}, e^{-is}) - 2 \cdot \left\{F^{+}\right\} (e^{it}) - 2 \cdot \left\{G^{+}\right\} (e^{is}) + c_{00}.$$

 $f^{+,+}(e^{it},e^{is}),f^{+,-}(e^{it},e^{-is}),f^{-,+}(e^{-it},e^{is}),f^{-,-}(e^{-it},e^{-is})$ H^2

Theorem 2.2

Proof

 $\sum_{k=1}^{K} f_k(z)g_k(w) \qquad \qquad H^2(\mathsf{T}^2). \qquad \qquad \mathcal{B}^{\mathbf{a}} \otimes \mathcal{B}^{\mathbf{b}} \qquad \qquad \mathcal{B}^{\mathbf{b}}$ $\sum_{k=1}^{K} f_k(z)g_k(w) \qquad \qquad H^2(\mathsf{T}^2). \qquad \mathcal{B}^{\mathbf{a}} \otimes \mathcal{B}^{\mathbf{b}} \qquad \qquad \mathcal{B}^{\mathbf{b}}$

D, $f \in H^2(\mathbf{T}^2)$,

$$S_{n}(f) = \sum_{1 \leq k,l \leq n} \langle f, B_{k}^{\mathbf{a}} \otimes B_{l}^{\mathbf{b}} \rangle B_{k}^{\mathbf{a}} \otimes B_{l}^{\mathbf{b}} = \sum_{k=1}^{n} D_{n}(f), D_{n}(f) = S_{n}(f) - S_{n-1}(f), S_{0}(f) = 0,$$

$$(2.15)$$

 $D_n(f)$, $D_n(f)$, $D_n(f)$ 2n-1, .

F $f \in H^2$ a_1, \dots, a_{n-1} b_1, \dots, b_{n-1} D_n, \dots, a_n, b_n D

$$||D_n(f)||^2 = \sum_{\{k,l\}=n} |\langle f, B_k^{\mathbf{a}} \otimes B_l^{\mathbf{b}} \rangle|^2$$
(2.16)

 a_n, b_n

Proof

 $f \in H^2 \qquad (a_n) \to 1 \qquad |b_n| \to 1, \quad a_1, \dots, a_{n-1} \qquad b_1, \dots, b_{n-1}, \quad (a_n) \to 1 \qquad |b_n| \to 1, \quad (a_n) \to 1,$

$$|a_n| \to 1, |b_n| \to 1$$
 $||D_n(f)||^2 = 0;$

$$||D_n(f-P)||^2 \le \epsilon$$

 $a_1, \ldots, a_{n-1}, a_n \qquad b_1, \ldots, b_{n-1}, b_n, \ldots \qquad P,$

$$|a_n| \to 1, |b_n| \to 1$$
 $||D_n(P)||^2 = 0.$

 D_n (2.15), C_n , C_n

$$|\langle P, B_n^{\mathbf{a}} \otimes B_l^{\mathbf{b}} \rangle|^2 \to 0, \qquad 1 \le l \le n$$
 (2.17)

.

$$|\langle P, B_k^{\mathbf{a}} \otimes B_n^{\mathbf{b}} \rangle|^2 \to 0, \qquad 1 \le k < n.$$
 (2.18)

$$\langle P, \mathcal{B}_{n}^{\mathbf{a}} \otimes \mathcal{B}_{l}^{\mathbf{b}} \rangle = \left\langle \prod_{k=1}^{n-1} S_{a_{k}}^{(1)} \prod_{k=1}^{l-1} S_{b_{k}}^{(2)}(P), e_{a_{n}} \otimes e_{b_{l}} \right\rangle$$

$$= \sqrt{1 - |a_{n}|^{2}} \sqrt{1 - |b_{l}|^{2}} \prod_{k=1}^{n-1} S_{a_{k}}^{(1)} \prod_{k=1}^{l-1} S_{b_{k}}^{(2)}(P)(a_{n}, b_{l})$$

$$\to 0, \qquad |a_{n}| \to 1, \qquad (2.19)$$

(2.18).

$$|a_n| \to 1, |b_n| \to 1$$
 $||D_n(P)||^2 = 0.$

, , , , $|a_n| \rightarrow 1$. B, \cdot , (2.19), , , (2.17) , , , , , , , , , , 2n-1. $D_n(f)$

$$\sum_{k=1}^{n} \|D_k(f)\|^2 \le \|f\|^2.$$

$$\sum_{n\to\infty}^{\infty} \|D_k(f)\|^2 = 0.$$

2.3.1

Theorem 2.4

 $f \in H^2(\mathbf{T}^2)$. F

$$\int_{n\to\infty} \|f - S_n(f)\|^2 = 0.$$

$$f = \int_{n \to \infty} S_n(f).$$

Proof

$$f=\sum_{k=1}^{\infty}D_k(f)+h,\quad h\neq 0,$$

 $D_k(f)$. . . ,

$$||h||^2 = ||f||^2 - \sum_{k=1}^{\infty} ||D_k(f)||^2 > 0.$$

 \tilde{a}, \tilde{b} D,

$$\langle h, e_{\{\tilde{a}\}} \otimes e_{\{\tilde{b}\}} \rangle = \sqrt{1 - |\tilde{a}|^2} \sqrt{1 - |\tilde{b}|^2} h(\tilde{a}, \tilde{b})$$

 $\langle h, e_{\{\tilde{a}\}} \otimes e_{\{\tilde{b}\}} \rangle \neq 0. \, \mathsf{D},$

$$\tilde{X} = \overline{\hspace{1cm}} \{ \tilde{\mathcal{B}}^{\mathsf{a}} \otimes \tilde{\mathcal{B}}^{\mathsf{b}} \},$$

 $\{\tilde{a}, a_1, \ldots, a_n, \ldots\}$; ; ; $\tilde{a}, \tilde{b}, a_1, b_1, \ldots, a_{n-1}, b_{n-1}$.

h , \tilde{X} ,

 $||h/\tilde{X}||_2 = \delta > 0.$

$$\|h/\tilde{X}\|_{2}^{2} \geq \sum_{k=1}^{\infty} \|\tilde{D}_{k}\|_{2}^{2} \geq \|\tilde{D}_{1}\|_{2}^{2} = |\langle h, e_{\tilde{a}} \otimes e_{\tilde{b}} \rangle|^{2} > 0.$$

$$\tilde{X}_M = \{\tilde{\mathcal{B}}_M^{\mathbf{a}} \otimes \tilde{\mathcal{B}}_M^{\mathbf{b}}\} \qquad X_M = \{\mathcal{B}_M^{\mathbf{a}} \otimes \mathcal{B}_M^{\mathbf{b}}\},$$

 $\{\tilde{a}, a_1, \ldots, a_{M-1}\}$ $\{\tilde{b}, b_1, \ldots, b_{M-1}\}.$

$$||h/\tilde{X} - h/\tilde{X}_M||^2 = \sum_{k=M+2}^{\infty} ||\tilde{D}_k||^2 \to 0,$$

$$_{M\to\infty}h/\tilde{X}_{M}=h/\tilde{X}.$$

120 Cohrane Macao, Wiley Online library, wiley.com/doi/10.1002/mma.3649 by Cochrane Macao, Wiley Online Library on [20/04/2023]. See the Terms and Conditions (https://onlinelibrary.wiley.com/rems-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the application of the propriet of the propriet of the application of the propriet o

Proof

$$|a| \to 1- |b| \to 1- |\langle \tilde{g}, e_a \otimes e_b \rangle|^2 = 0.$$

$$|a| \to 1 - |b| \to 1 - \|\tilde{g} - \langle \tilde{g}, e_a \otimes e_b \rangle e_a \otimes e_b\| = \|\tilde{g}\|. \tag{3.21}$$

 $24, r, s \in [0, 1). F \quad \epsilon > 0, \qquad r$

$$\begin{split} \|\tilde{g}\| &\geq \|\tilde{g} - \langle \tilde{g}, e_a \otimes e_b \rangle e_a \otimes e_b \| \\ &\geq \|(P_r \otimes P_s) * [\tilde{g} - \langle \tilde{g}, e_a \otimes e_b \rangle e_a \otimes e_b] \| \\ &\geq \|(P_r \otimes P_s) * \tilde{g}\| - |\langle \tilde{g}, e_a \otimes e_b \rangle| \|(P_r \otimes P_s) * (e_a \otimes e_b) \| \\ &\geq (1 - \epsilon) \|\tilde{g}\| - \|\tilde{g}\| \|(P_r \otimes P_s) * (e_a \otimes e_b) \|. \end{split}$$

$$(3.22)$$

 s_{i} , $e_{a} \otimes e_{b} \in H^{2}$, $z = re^{it}$, $w = se^{iu}$,

$$(P_r \otimes P_s) * (e_a \otimes e_b)(e^{it}, e^{iu}) = e_a(z)e_b(w).$$

$$\begin{aligned} \|(P_r \otimes P_s) * (e_a \otimes e_b)\|^2 &= \frac{1}{(2\pi)^2} \int_0^{2\pi} \frac{1 - |a|^2}{|1 - \overline{a} r e^{it}|^2} dt \int_0^{2\pi} \frac{1 - |b|^2}{|1 - \overline{b} s e^{iu}|^2} du \\ &= \frac{1 - |a|^2}{1 - r^2 |a|^2} \frac{1 - |b|^2}{1 - s^2 |b|^2}. \end{aligned}$$

 $|a| \rightarrow 1 \quad |b| \rightarrow 1, \quad (3.22)$

$$\|\tilde{g}\| \ge \|\tilde{g} - \langle \tilde{g}, e_a \otimes e_b \rangle e_a \otimes e_b \| \ge (1 - 2\epsilon) \|\tilde{g}\|.$$

B (3.21)

$$f = \sum_{k=1}^{\infty} \langle g_k, e_{a_k} \otimes e_{b_k} \rangle e_{a_k} \otimes e_{b_k}.$$

 $a \in \mathcal{A}$, $\|e_a\| = 1$,

$$f = \sum_{k=1}^{n-1} \langle f, B_k \rangle B_k + g_n, \tag{3.23}$$

 $\{a_1,\ldots,a_k\},\ldots$ ρ pre-orthogonal ρ -Maximal Selection Principle

$$|\langle g_k, B_k \rangle| \ge \rho \cdot \{|\langle g_k, B_k^a \rangle| : a \in \mathcal{A}\}, \quad \rho \in (0, 1], \tag{3.24}$$

 $\{B_1,\ldots,B_{k-1},B_k^a\}$ $\{a_1,\ldots,a_{k-1},a\}$. Weak Pre-orthogonal Greedy Algorithm, $\rho=1$, ρ Weak Pre-orthogonal Greedy

$$|\langle g_k, a_k \rangle| \ge \rho \cdot \{|\langle g_k, a \rangle| : a \in \mathcal{A}\}, \quad \rho \in (0, 1]. \tag{3.25}$$

1.00 Poly 1476, 2016, 10, Downloaded from https://onlinelibrary.viely.com/doi/10.1002/mma.3649 by Cochrane Macao, Wiley Online Library on [20/04/2023]. See the Terms and Conditions (https://onlinelibrary.wiley.com/rems-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the application.

$$\cdot \{|\langle g_k, B_k^a \rangle| : a \in \mathcal{A}\} \ge |\langle g_k, B_k^{a_k} \rangle|.$$

$$\langle f, B_k \rangle = \langle g_k, B_k \rangle.$$

$$\left\|f - \sum_{k=1}^{n} \langle f, B_k \rangle B_k \right\|^2 = \|f\|^2 - \sum_{k=1}^{n} |\langle f, B_k \rangle|^2,$$

, , , , , , , , , B, , - , , , , - ,

$$\sum_{k=1}^{\infty} |\langle f, B_k \rangle|^2 \leq ||f||^2.$$

Theorem 3.2

A.F. $f \in A.F.$ $f \in A.F.$ f

$$f=\sum_{k=1}^{\infty}\langle f,B_k\rangle B_k,$$

Proof

B. $f = \sum_{k=1}^{\infty} \langle f, B_k \rangle B_k + h, h \neq 0, h \perp \overline{B}, \qquad B = \underbrace{\{a_1, \dots, a_n, \dots\}}, h \neq 0, h \perp \overline{B}, \qquad B = \underbrace{\{a_1, \dots, a_n, \dots\}}, h \neq 0, h \perp \overline{B}, \qquad B = \underbrace{\{a_1, \dots, a_n, \dots\}}, h \neq 0, h \perp \overline{B}, \qquad B = \underbrace{\{a_1, \dots, a_n, \dots\}}, h \neq 0, h \perp \overline{B}, \qquad B = \underbrace{\{a_1, \dots, a_n, \dots\}}, h \neq 0, h \perp \overline{B}, \qquad B = \underbrace{\{a_1, \dots, a_n, \dots\}}, h \neq 0, h \perp \overline{B}, \qquad B = \underbrace{\{a_1, \dots, a_n, \dots\}}, h \neq 0, h \perp \overline{B}, \qquad B = \underbrace{\{a_1, \dots, a_n, \dots\}}, h \neq 0, h \perp \overline{B}, \qquad B = \underbrace{\{a_1, \dots, a_n, \dots\}}, h \neq 0, h \perp \overline{B}, \qquad B = \underbrace{\{a_1, \dots, a_n, \dots\}}, h \neq 0, h \perp \overline{B}, \qquad B = \underbrace{\{a_1, \dots, a_n, \dots\}}, h \neq 0, h \perp \overline{B}, \qquad B = \underbrace{\{a_1, \dots, a_n, \dots\}}, h \neq 0, h \perp \overline{B}, \qquad B = \underbrace{\{a_1, \dots, a_n, \dots\}}, h \neq 0, h \perp \overline{B}, \qquad B = \underbrace{\{a_1, \dots, a_n, \dots\}}, h \neq 0, h \perp \overline{B}, \qquad B = \underbrace{\{a_1, \dots, a_n, \dots\}}, h \neq 0, h \perp \overline{B}, \qquad B = \underbrace{\{a_1, \dots, a_n, \dots\}}, h \neq 0, h \perp \overline{B}, \qquad B = \underbrace{\{a_1, \dots, a_n, \dots\}}, h \neq 0, h \perp \overline{B}, \qquad B = \underbrace{\{a_1, \dots, a_n, \dots\}}, h \neq 0, h \perp \overline{B}, \qquad B = \underbrace{\{a_1, \dots, a_n, \dots\}}, h \neq 0, h \perp \overline{B}, \qquad B = \underbrace{\{a_1, \dots, a_n, \dots\}}, h \neq 0, h \perp \overline{B}, \qquad B = \underbrace{\{a_1, \dots, a_n, \dots\}}, h \neq 0, h \perp \overline{B}, \qquad B = \underbrace{\{a_1, \dots, a_n, \dots\}}, h \neq 0, h \perp \overline{B}, \qquad B = \underbrace{\{a_1, \dots, a_n, \dots\}}, h \neq 0, h \perp \overline{B}, \qquad B = \underbrace{\{a_1, \dots, a_n, \dots\}}, h \neq 0, h \perp \overline{B}, \qquad B = \underbrace{\{a_1, \dots, a_n, \dots\}}, h \neq 0, h \perp \overline{B}, \qquad B = \underbrace{\{a_1, \dots, a_n, \dots\}}, h \neq 0, h \perp \overline{B}, \qquad B = \underbrace{\{a_1, \dots, a_n, \dots\}}, h \neq 0, h \perp \overline{B}, \qquad B = \underbrace{\{a_1, \dots, a_n, \dots\}}, h \neq 0, h \perp \overline{B}, \qquad B = \underbrace{\{a_1, \dots, a_n, \dots\}}, h \neq 0, h \perp \overline{B}, \qquad B = \underbrace{\{a_1, \dots, a_n, \dots\}}, h \neq 0, h \perp \overline{B}, \qquad B = \underbrace{\{a_1, \dots, a_n, \dots\}}, h \neq 0, h \perp \overline{B}, \qquad B = \underbrace{\{a_1, \dots, a_n, \dots\}}, h \neq 0, h \perp \overline{B}, \qquad B = \underbrace{\{a_1, \dots, a_n, \dots\}}, h \neq 0, h \perp \overline{B}, \qquad B = \underbrace{\{a_1, \dots, a_n, \dots\}}, h \neq 0, h \perp \overline{B}, \qquad B = \underbrace{\{a_1, \dots, a_n, \dots\}}, h \neq 0, h \perp \overline{B}, \qquad B = \underbrace{\{a_1, \dots, a_n, \dots\}}, h \neq 0, h \perp \overline{B}, \qquad B = \underbrace{\{a_1, \dots, a_n, \dots\}}, h \neq 0, h \perp \overline{B}, \qquad B = \underbrace{\{a_1, \dots, a_n, \dots\}}, h \neq 0, h \perp \overline{B}, \qquad B = \underbrace{\{a_1, \dots, a_n, \dots\}}, h \neq 0, h \perp \overline{B}, \qquad B = \underbrace{\{a_1, \dots, a_n, \dots\}}, h \neq 0, h \perp \overline{B}, \qquad B = \underbrace{\{a_1, \dots, a_n, \dots\}}, h \neq 0, h \perp \overline{B}, \qquad B = \underbrace{\{a_1, \dots, a_n, \dots\}}, h \neq 0, h \perp \overline{B}, \qquad B = \underbrace{\{a_1, \dots, a_n, \dots\}}, h \neq 0, h \perp \overline{B}, \qquad B = \underbrace{\{a_1, \dots, a_n, \dots\}}, h \neq 0, h \perp \overline{B}, \qquad B = \underbrace{\{a_1, \dots, a_n, \dots\}}, h \neq 0, h \perp \overline{B}, \qquad B = \underbrace{$

$$_{n\to\infty}h/$$
 $\mathcal{B}_{n+1}^b=h/\overline{\mathcal{B}^b}.$

F, N , , - , , , ,

$$||h/$$
 $\mathcal{B}_{n+1}^b|| > \delta/2$, $\left\|\sum_{k=N+1}^{\infty} \langle f, B_k \rangle B_k \right\| < \delta/2^m$,

$$f = \sum_{k=1}^{N} \cdot + \sum_{k=N+1}^{\infty} \cdot + h$$
$$= \sum_{k=1}^{N} \cdot + g_{N+1}.$$

1

$$|\langle f, B_{N+1} \rangle| = |\langle g_{N+1}, B_{N+1} \rangle|$$

$$= |\langle \sum_{k=N+1}^{\infty} \cdot , B_{N+1} \rangle|$$

$$\leq \|\sum_{k=N+1}^{\infty} \cdot \|$$

$$\leq \delta/2^{m}.$$

10 Continue Macao, Wiley Online Library on [2004,105, 10, Downloaded from https://onlinelibrary.wiley.com/torins-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the application of the policient of the polic Creaty404mgn

 $\{a_1,\ldots,a_N,B_{N+1}\}$ $\{a_1,\ldots,a_N,b\},$

$$\begin{aligned} |\langle f, \mathcal{B}_{N+1}^b \rangle| &= |\langle g_{N+1}, \mathcal{B}_{N+1}^b \rangle| \\ &= |\langle h + \sum_{N+1}^{\infty} \cdot , \mathcal{B}_{N+1}^b \rangle| \\ &\geq |\langle h, \mathcal{B}_{N+1}^b \rangle| - |\langle \sum_{N+1}^{\infty} \cdot , \mathcal{B}_{N+1}^b \rangle| \\ &= \|h / \qquad \mathcal{B}_{n+1}^b \| - |\langle \sum_{N+1}^{\infty} \cdot , \mathcal{B}_{N+1}^b \rangle| \\ &\geq \delta/2 - \delta/2^m \\ &= \frac{(2^{m-1} - 1)\delta}{2^m}. \end{aligned}$$

$$|\langle f, B_{N+1} \rangle| / \cdot \{ |\langle f, B_{N+1}^a \rangle| : a \in \mathcal{A} \} < \frac{1}{2^{m-1} - 1}.$$

 $\{a_{1},...,a_{n-1}\}.$ $\{a_{1},...,a_{n-1}\}.$ $\{a_{n},...,a_{n-1}\}.$ $\{a_{n},...,a_{n-1}\}.$ $\{a_{n},...,a_{n-1}\}.$ $\{a_{n},...,a_{n-1}\}.$ $\{a_{n},...,a_{n-1}\}.$ $\{a_{n},...,a_{n-1}\}.$ $\{a_{1},...,a_{n-1}\}.$

$$Q_{\{a_1,\ldots,a_{n-1}\}}(a_n) = a_n - \sum_{k=1}^{n-1} \langle a_n, B_k \rangle B_k, \quad B_n = \frac{Q_{\{a_1,\ldots,a_{n-1}\}}(a_n)}{\|Q_{\{a_1,\ldots,a_{n-1}\}}(a_n)\|}.$$

 $Q_{\{a_1,...,e_{n-1}\}}$ Q_{n-1} .

$$g_n = Q_{\{a_1,\dots,a_{n-1}\}}(f),$$
 (3.26)

$$|\langle g_{n}, B_{n}^{a} \rangle| = \frac{1}{\|Q_{\{a_{1}, \dots, a_{n-1}\}}(a)\|} |\langle Q_{\{a_{1}, \dots, a_{n-1}\}}(f), Q_{a_{1}, \dots, a_{n-1}}(a) \rangle|$$

$$= \frac{1}{\|Q_{\{a_{1}, \dots, a_{n-1}\}}(a)\|} |\langle Q_{\{a_{1}, \dots, a_{n-1}\}}^{2}(f), a \rangle|$$

$$= \frac{1}{\|Q_{\{a_{1}, \dots, a_{n-1}\}}(a)\|} |\langle Q_{\{a_{1}, \dots, a_{n-1}\}}(f), a \rangle|$$

$$= \frac{1}{\|Q_{\{a_{1}, \dots, a_{n-1}\}}(a)\|} |\langle g_{n}, a \rangle|.$$
(3.27)

 a_1,\ldots,a_{n-1} A, $a\in A$,

$$r_n(a) = \|Q_{\{a_1,\dots,a_{n-1}\}}(a)\|.$$
 (3.28)

 $r_n(a) \leq 1.$, $r_n(a) = 1$, a = 1 , a =

$$|\langle g_n, \mathcal{B}_n^a \rangle| = \frac{1}{r_n(a)} |\langle g_n, a \rangle| \ge |\langle g_n, a \rangle|.$$

, 33 (, 2), , ,

$$H^{2}(\mathcal{A}, M) = \{ f \in H^{2} : f = \sum_{k=1}^{\infty} c_{k} a_{k}, \sum_{k=1}^{\infty} |c_{k}| \leq M \}.$$

:

Theorem 3.3

 $f \in H^{2}(\mathcal{A}, M). D \qquad g_{m} \qquad f \qquad \{B_{1}, \dots, B_{m-1}\}$ $\dots \qquad \{a_{1}, \dots, a_{m-1}\} \qquad \rho \qquad R_{m} = \{r_{1}, \dots, r_{m}\}, r_{n} = \{r_$

$$\|g_m\| \leq \frac{R_m M}{\rho} \frac{1}{\sqrt{m}}.$$

, , , , , , , , , , , , , , , 33

Lemma 3.4

 $\{d_n\}_{n=1}^m$, $m_{\overline{z}}$, - , - ,

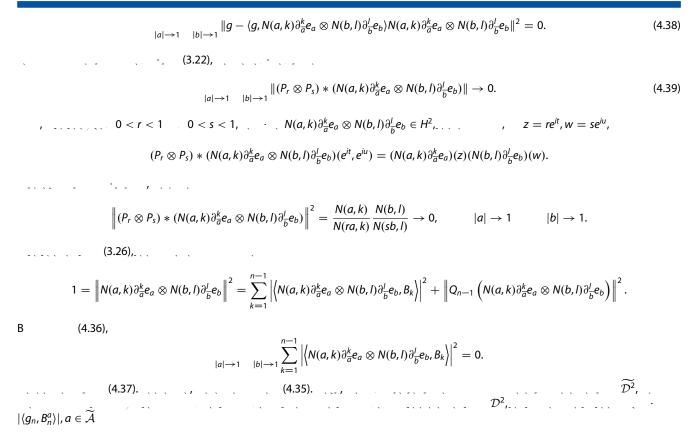
$$d_1 \leq A_m$$
, $d_{n+1} \leq d_n \left(1 - \frac{d_n}{A_m}\right)$.

.

$$d_m \leq \frac{A_m}{m}$$
.

 $, \ldots, n \leq m, \quad n \leq m, \quad A_m \leq A_{r_m}, \ldots, m$

$$d_m \leq \frac{A}{m}$$
.


Proof of Theorem 3.3

A · $\sum_{k} f = \sum_{k} c_k b_k$ $\sum_{k} |c_k| \le M$.

$$||g_{m+1}||^2 = ||g_m||^2 - |\langle g_m, B_m \rangle|^2.$$

 \dots :F \dots $n \leq m_r$

$$\begin{aligned} |\langle g_n, B_n \rangle| &\geq \rho \underset{a \in \mathcal{A}}{\cdot} |\langle g_n, B_n^a \rangle| \\ &\geq \rho \underset{k}{\cdot} |\langle g_n, B_n^{b_k} \rangle| \\ &= \rho \underset{k}{\cdot} \frac{|\langle g_n, b_k \rangle|}{r_n(b_k)} \\ &\geq \frac{\rho}{r_n} \underset{k}{\cdot} |\langle g_n, b_k \rangle| \\ &\geq \frac{\rho}{r_n M} |\langle g_n, \sum_k c_k b_k \rangle| \\ &= \frac{\rho}{r_n M} |\langle g_n, f \rangle| \\ &\geq \frac{\rho}{R_m M} \|g_n\|^2 \end{aligned}$$

10991476, 2016, 10, Downloaded from https://onlinelthary.wiley.com/doi/10.1002/mma.3649 by Cochrane Macco, Wiley Online Library on [20/04/2023]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License

	B The Cauchy Transform, Potential Theory and Conformal Mappings. C. C: B, 1992.
5. 6.	B. Bounded Analyic Functions. : , , 1981.
	B.,
/.	E, ,
0.	
۵	, 1998,; 903 995. C, A
	In Interpolation and Approximation by Rational Functions in the Complex Plane. A
	B A,
12.	
١٥.	B, Source B, Sou
16	F
10.	880 891.D. : 10.1002/ .1214.
17	. Cyclic AFD algorithm for best approximation by rational functions of given order,
.,.	. Cyclic in 2 ago in minor certappion material by rational random of given oracle,
18.	original of the second of the
	A. A 1
10	
19.	Automatica: 48:1154-1162.
	1 , .F
20.	I , , F. A
20.	 F. A Systems and Control Letters 2012; 61(1): 223 230.
20.21.	 1 , F. A
20.21.22.	 1 , Systems and Control Letters 2012; 61(1): 223 230. 1 , On backward shift algorithm for estimating poles of systems. , C - , . Complex Variables and Elliptic Equations 2014; 59(6):841 846.
20.21.22.23.	 1 , F. A 223 230. 1 , On backward shift algorithm for estimating poles of systems. C - , E . Singular integrals and differentiability properties of functions. Systems and Control Letters 2012; 61(1): A . Complex Variables and Elliptic Equations 2014; 59(6):841 846. E . Singular integrals and differentiability properties of functions. 1 , Systems and Control Letters 2012; 61(1): A . Complex Variables and Elliptic Equations 2014; 59(6):841 846.
20.21.22.23.24.	Systems and Control Letters 2012; 61 (1): 223 230. 1 , On backward shift algorithm for estimating poles of systems. , C - ,
20.21.22.23.24.	Systems and Control Letters 2012; 61 (1): 223 230. 1 , On backward shift algorithm for estimating poles of systems. , C - ,
20.21.22.23.24.25.	Systems and Control Letters 2012; 61 (1): 223 230. On backward shift algorithm for estimating poles of systems. Complex Variables and Elliptic Equations 2014; 59 (6):841 846. El. Singular integrals and differetiability properties of functions. El., Introduction to Fourier analysis on Euclidean spaces. Complex Variables and Elliptic Equations 2014; 59 (6):841 846. El., Introduction to Fourier analysis on Euclidean spaces. Complex Variables and Elliptic Equations 2014; 59 (6):841 846. El., Revista Matematica 1994; 10 (3):665 695.
20.21.22.23.24.25.	Systems and Control Letters 2012; 61 (1): 223 230. 1 , On backward shift algorithm for estimating poles of systems. , C - ,
20.21.22.23.24.25.	Systems and Control Letters 2012; 61(1): 223 230. 1 , On backward shift algorithm for estimating poles of systems.
20.21.22.23.24.25.26.27.	Systems and Control Letters 2012; 61 (1): 223 230. On backward shift algorithm for estimating poles of systems. Complex Variables and Elliptic Equations 2014; 59 (6):841 846. B. Singular integrals and differetiability properties of functions. Complex Variables and Elliptic Equations 2014; 59 (6):841 846. B. Singular integrals and differetiability properties of functions. Complex Variables and Elliptic Equations 2014; 59 (6):841 846. B. Singular integrals and differetiability properties of functions. Complex Variables and Elliptic Equations 2014; 59 (6):841 846. Complex Variables and Elliptic Equations 2014; 59 (6):841 846. Complex Variables and Elliptic Equations 2014; 59 (6):841 846. Complex Variables and Elliptic Equations 2014; 59 (6):841 846. Complex Variables and Elliptic Equations 2014; 59 (6):841 846. Complex Variables and Elliptic Equations 2014; 59 (6):841 846. Complex Variables and Elliptic Equations 2014; 59 (6):841 846. Complex Variables and Elliptic Equations 2014; 59 (6):841 846. Complex Variables and Elliptic Equations 2014; 59 (6):841 846. Complex Variables and Elliptic Equations 2014; 59 (6):841 846. Complex Variables and Elliptic Equations 2014; 59 (6):841 846. Complex Variables and Elliptic Equations 2014; 59 (6):841 846. Complex Variables and Elliptic Equations 2014; 59 (6):841 846. Complex Variables and Elliptic Equations 2014; 59 (6):841 846. Complex Variables and Elliptic Equations 2014; 59 (6):841 846. Complex Variables and Elliptic Equations 2014; 59 (6):841 846. Complex Variables and Elliptic Equations 2014; 59 (6):841 846. Complex Variables and Elliptic Equations 2014; 59 (6):841 846. Complex Variables and Elliptic Equations 2014; 59 (6):841 846. Complex Variables and Elliptic Equations 2014; 59 (6):841 846. Complex Variables and Elliptic Equations 2014; 59 (6):841 846. Complex Variables and Elliptic Equations 2014; 59 (6):841 846. Complex Variables and Elliptic Equations 2014; 59 (6):841 846. Complex Variables and Elliptic Equatio
20.21.22.23.24.25.26.27.	Systems and Control Letters 2012; 61(1): 223 230. 1 , On backward shift algorithm for estimating poles of systems.
20.21.22.23.24.25.26.27.28.	Systems and Control Letters 2012; 61(1): 223 230. 1
20.21.22.23.24.25.26.27.	Systems and Control Letters 2012; 61(1): 223 230. 1
20.21.22.23.24.25.26.27.28.29.	Systems and Control Letters 2012; 61(1): 223 230. 1
20.21.22.23.24.25.26.27.28.29.30.	Systems and Control Letters 2012; 61(1): 223 230. 1
20.21.22.23.24.25.26.27.28.29.30.31.	Systems and Control Letters 2012; 61(1): 223 230. 1
20.21.22.23.24.25.26.27.28.29.30.31.	F. A
20.21.22.23.24.25.26.27.28.29.30.31.32.	Systems and Control Letters 2012; 61(1): 223 230. , On backward shift algorithm for estimating poles of systems.