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FOR QUATERNIONIC OPERATORS AND FOR n-TUPLES OF
NONCOMMUTING OPERATORS
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ABSTRACT. In th.s paper we extend the H* funct.ona; ca,cu,us to quatern,on,.c operators
and to n tup, es of noncof” Fut,ng operators us,ng the theory of 5.ce hyperhoio orph,c func
t.ons and the assoc,ated funct\ona1 caycuyus, ca;;ed S funct.ona, ca cu,us i S funct,ona,
caycuy us has two vers,ons one for quatern,on,c va,ued funct,ons and one for Ci'.‘ ord ay gebra

vaftued funct,ons and can be cons.dered the esz Dunford funct.,ona' caycugus based on

5.ce hyperhoio?orph.c\ty because .t shares w.th .t the ?ost \?portant propert.es A he S
funct.onai cacuus .8 based on the not.on of S spectruf wh.ch, .n the case of quatern,on.c
nor£a, operators on a H. bert space _s a;s0 the not.on of spectruf that appears .n the
quatern,on,c spectra, theoref” i he Fan purpose of th,s paper .s to construct the H*

funct.onai caycuy us baged on the not.on of S spectruf for both quatern,on.c operators and

for n tup;es of noncof Fut.ng operators ¢ re arf that the H* funct.,ona' cay cu;us for
ng i tupes of operators appj.es, .n part\cu”r, to the D.rac operator
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1. INTRODUCTION

The H-functional calculus is an extension of the Riesz-Dunford functional calculus for
bounded operators, see [21], to unbounded sectorial operators and it has been introduced by
A. Mclntosh in [38], see also [2]. This calculus is connected with pseudo-differential operators,
with the Kato’s square root problem, and with the study of evolution equations and, in par-
ticular, the characterization of maximal regularity and of the fractional powers of differential
operators. For an overview and more problems associated with this functional calculus see
the paper [41], the book [27] and the references therein.

One of the main motivations to study quaternionic operators is the fact that they are im-
portant in the formulation of quantum mechanics. In fact, it was proved by G. Birkhoff
and J. von Neumann [9], that there are essentially two possible ways to formulate quantum
mechanics: using complex numbers or quaternions, see [1].

The main purpose of this paper is to construct the H* functional calculus based on the

notion of S-spectrum for quaternionic operators and for n-tuples of noncommuting opera-
tors. To do this, we replace the Riesz-Dunford functional calculus by the S-functional calculus
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which is the quaternionic version of the Riesz-Dunford functional calculus, see [6, 12, 13, 20].
The S-functional calculus is based on the notion of S-spectrum which, in the case of quater-
nionic normal operators on a Hilbert space, is also the notion of spectrum that appears in
the quaternionic spectral theorem, see [7, 8, 24]. The S-functional calculus is defined for
slice hyperholomorphic functions: for the quaternionic version of the function theory see the
books [4, 20, 23] and for the Clifford algebra version see [20].

We begin by recalling some results and definitions from the complex setting, following the
paper [38] and the book [27]. Let A be a linear operator on a complex Banach space X, with
dense domain D(A) and dense range Ran(A). Let w  [0,1). We say that A is of type w if
its spectrum 0(A) is contained in the sector

So={z C: |ag(z)|=w} {0}

and if there exists a positive constant c,, for { > @, such that
C
(A—zl)7t =2
|z|

for all z such that |arg(z)| = p.
For this class of operators, called sectorial operators, it is possible to construct a functional
calculus using bounded holomorphic functions g for which there exists two positive constants
a and ¢ such that 2]
C|z
l9(2)l = T 2=
where S? is the interior of S,,. The strategy is based on the Cauchy formula for holomorphic
functions in which we replace the Cauchy kernel by the resolvent operator R(A, A). In the
case A is a bounded linear operator then the spectrum of A is a bounded and nonempty set
in the complex plane, so using a suitable contour Yy, that surrounds the spectrum of A it is
possible to define the bounded linear operator

9(A) = - / (21 — A)lg(z)dz. 2)
Y

~ omi

forall z S2, (1)

The integral (2) turns out to be convergent for sectorial operators, if we assume that estimate
(1) holds for the bounded holomorphic function g. We point out that the definition is well
posed, because the integral does not depend on the contour y when y does not intersect the
spectrum of A.

Now we extend the above calculus so that we can define operators such as A* with A C or
NPAPR(A, A)? with B (0,2). Using the functional calculus defined in (2) and the rational
functional calculus

k+1
o) = (AT +AYT) T kN, (3)
where i
z +1
¢(z) = (1+z2> KON,
we can define a more general functional calculus for sectorial operators given by
F(A) = ((A) T (FD)(A) (4)

where T is a holomorphic function on S? which satisfies bounds of the type
If(2)| < c(|z|* + |z|7%), for ¢>0, k>0.

The calculus defined in (4) is called the H* functional calculus and has been introduced in
[38]. Note that, strictly speaking, we should write ¢y, instead of ¢, but we omit the subscript
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for the sake of simplicity. The definition above is well posed since the operator f(A) does
not depend on the suitable rational function ¢ that we choose.

Moreover, observe that the operator (f¢)(A) can be defined using the functional calculus
(2) for the function ¢, where ¢(z) = (z(1 + z2)~')*+1. The operator (Fp)(A) is bounded
but (¢p(A))~! is closed, so the operator f(A) defined in (4) is not necessarily bounded. This
calculus is very important because of Theorem 5.8 that we state in the sequel.

To explain how we can extend the H® functional calculus to the quaternionic setting we
must make precise the notions of spectrum, of resolvent operator, of holomorphicity. With
the standard imaginary units €1, es obeying e1e2+e2e; = 0, e% = e% = —1 and e3 := e;e9, the
algebra of quaternions H consists of elements of the form q = Xo+X1€1+Xo82+X3€3, for X, R,
for =0,...,3. The real part, imaginary part and the square of the modulus of a quaternion
are defined as Re q = X, Im ( = X1€1 + X289 + X3€3, |q|> = X% + X% + X% + X%, respectively.
The conjugate q of the quaternion q is defined by § = Re g —Im q = Xg — X181 — X282 — X3€3
and it satisfies

lal* = qq = qq.
By S we denote the sphere of purely imaginary quaternions whose square is —1. Every
element i S works as an imaginary unit and with each i S we associate the complex plane
C; ={u+iv : u,v R} so that we have that H can be seen as the union of the complex planes
C; when i varies in S. In this paper for the quaternionic setting, and in the Clifford algebra
setting we use the notion of slice hyperholomorphicity, see Section 2. Regarding operators we
replace the classical notion of spectrum of an operator by the S-spectrum of a quaternionic
operator (resp. the S-spectrum of the n-tuples of operators) and the resolvent operator by
the two S-resolvent operators which are slice hyperholomorphic functions operator—valued,
see the book [20].
Precisely, we define the S-spectrum of the bounded quaternionic linear operator T as

0s5(T)={s H : T?—2Re(s)T +]s|?l is not invertible in B(V )}

where B(V ) denotes the space of all bounded linear operators on a two-sided quaternionic
Banach space V. In the case of bounded quaternionic linear operators the S-spectrum is a
nonempty and compact set. The S-resolvent set pg(T) is defined by

ps(T) =H\os(T).
Fors pg(T) we define the left S-resolvent operator as

S (s, T) i=—(T? = 2s0T + [s]*1) (T —5l), (5)
and the right S-resolvent operator as
SRS, T) i=—(T =sI)(T?=2s50T + [s]*1)~". (6)

Let U H be a suitable domain that contains the S-spectrum of T. We define the quater-
nionic functional calculus for left slice hyperholomorphic functions ¥ : U - H as

1

f(T) = ﬁ/aamc (s, T) £
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In the following we will consider just right linear quaternionic operators (similar considera-
tions can be done when we consider left linear operators). In order to extend the S-functional
calculus to closed operators it is necessary that the two S-resolvent operators are defined not
only on the domain of T but they must be defined for all elements in the two-sided quater-
nionic Banach space V. So for closed operators we define the S-resolvent set as

ps(T):={s H : (T?—=2Re(s)T +[s|*1)"' B(V)},

which we always suppose it to be nonempty, and the S-spectrum of T as
Os(T) =H\ pg(T).
Fors pg(T) the left S-resolvent operator is defined as

S (s, T) :=Qs(T)S—TQ4(T) (9)
while the right S-resolvent operator remains as in (6), we simply rewrite it in terms of Q4(T)
as:

Sp'(8.T) = —(T = 15)Qy(T) (10)
where Qg(T) := (T2 —2Re(s)T +|s|*1)~! is called the pseudo-resolvent operator of T.

The quaternionic rational functions that we will use are intrinsic rational slice hyperholomor-

phic functions. This class of functions is of fundamental importance and allows the definition
of a rational functional calculus that includes the operators:

L|J(T):<T(I+T2)‘1)k+l, K N

Note that, also in this case, we write { instead of Y. We extend the S-functional calculus
to sectorial operators in the quaternionic setting, and then we use the classical regularizing
procedure to define the extended functional calculus for slice hyperholomorphic functions
with suitable growth conditions

F(T) = (W(T)) " (WF)(T),
where the operator (Yf)(T) is defined using the S-functional calculus for sectorial operators,

and Y(T) is defined by the rational quaternionic functional calculus. The definition does not
depend on the suitable rational function { that we choose.

FExamples of operators to which this calculus applies are:
(i) The Cauchy-Fueter operator (and its variations)

(ii) Quaternionic operators appearing in quaternionic quantum mechanics such as the
Hamiltonian, see [1].
(iii) The global operator (see [17]) that annihilates slice hyperholomorphic functions:

3
|9|2aixo +q ;Xjaixj, where g = X1€1 + X2€2 + X3€3.

We recall that some classical results on groups and semigroups of linear operators (see
[26, 28, 31, 37]) have been extended to the quaternionic setting in some recent papers. In [14]
it has been proved the quaternionic Hille-Yosida theorem, in [5] has been studied the problem
of generation by perturbations of the quaternionic infinitesimal generator and in [3] the natu-
ral functional calculus has been defined for the infinitesimal generator of quaternionic groups
of operators. For semigroups over real alternative *-algebras and generation theorems see [25].
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Regarding the case of (n + 1)-tuples of operators we postpone the details in Section 7. We
only mention that the H* functional calculus of (n + 1)-tuples of operators applies to the
Dirac operator. We point out that the above formulas for the quaternionic functional calcu-
lus hold also for (n + 1)-tuples of noncommuting operators. Here we just recall the notion
of S-spectrum. By V,, we denote the tensor product of the real Banach space V with the
real Clifford algebra R, we consider. In the case of (n + 1)-tuples of bounded operators
(To, Ty, ..., Tp,) the S-spectrum is defined as

0s5(T)={s H : T?—2s0T +[s|*l is not invertible in B(V,,)}
where the operators T, act on V for = 0,...,n. The paravector operator
T=To+eiT1+..+e,T,

represents the (N+1)-tuples of bounded operators (Ty, Ty, ..., T;,) where ey, ..., &, are the units
of the Clifford algebra R,,, S is the paravector S = Sy + S1€1 + ... + Sp€,, with s, R for

=0,...,n and [s] is the Euclidean norm of the paravector s. With these notations in mind
also for the (n+ 1)-tuples of bounded operators (Tp, Ty, ..., T,) we can define the S-resolvent
operators and the S-functional calculus, see [15, 18, 20].

Using a different approach, based on the classical theory of functions in the kernel of the
Dirac operator, see [10, 19], A. McIntosh with some of his coauthors developed the mono-
genic functional calculus, see [32, 33, 34, 35, 36], and based on it he also developed the H*
functional calculus for commuting operators see [29].

The plan of the paper is as follows. In Section 2 we recall the main facts on slice hyper-
holomorphic functions. In Section 3 we study the rational functions in the quaternionic
setting and we define the rational functional calculus. Section 4 contains the S-functional
calculus for quaternionic linear operators of type w and some properties. Section 5 is devoted
to the definition and some properties of the H* functional calculus for quaternionic operators
and in Section 6 we consider quadratic estimates that guarantee the boundedness of the H>
functional calculus. In section 7 we adapt the results of the previous sections to the case of
(n + 1)-tuples of noncommuting operators.

2. PRELIMINARY RESULTS ON SLICE HYPERHOLOMORPHIC FUNCTIONS

In this section we recall some basic facts on the theory of slice hyperholomorphic functions in
the quaternionic setting; for the proofs of the statements see the book [20] and the references
therein. We denote by S the 2-sphere of purely imaginary quaternions of modulus 1:

S ={q=x1€1 + X8y + xze3 H | > =—1}

and we recall that for any 1 S we can define a complex plane C; whose elements are of the
form ¢ = u+iv for u, v R. Any quaternion ¢ belongs to a suitable complex plane: if we

set
q : _
iq — @, if 9 =0
any i S, ifq=0,
then g = u+i,v with u = Re(q) and v = |g], so, it follows that, the skew field of quaternions
H can be seen as
H={]cC.

1€S
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Definition 2.1 (Slice hyperholomorphic function). Let U  H be open and let f: U - H be

a real differentiable function. For any i S, let f; := F|ync, denote the restriction of T to
the plane C;. The function T is called left slice hyperholomorphic if, for any i S,

1/0 .0 .

5 <Ef,-(q) + |Wf,-(q)> =0 forallg=u+iv UnC; (11)
and right slice hyperholomorphic if, for any i S,

1/0 0 . .

3 (Efi(q) + Efi(q)|> =0 forallg=u+iv UnC,. (12)

A left (or right) slice hyperholomorphic function that satisfies £(U nC;)  C; for everyi S
1s called intrinsic.

We denote the set of all left slice hyperholomorphic functions on U by SHL(U), the set of all
right slice hyperholomorphic functions on U by SHr(U) and the set of all intrinsic functions
by N (U).

The importance of the class of intrinsic functions is due to the fact that the multiplication
and composition with intrinsic functions preserve slice hyperholomorphicity. This is not true
for arbitrary slice hyperholomorphic functions.

Theorem 2.2. Let U be an open set in H and let SHL(U), SHr(U) and N (U) the spaces
of slice hyperholomorphic functions defined above.

Iff N(U)andg SHg(U), then fg SHr(U).

Iff SHgrU) andg N(U), then fg SHg(U).

Ifg N(U) and f SHz(g(VU)), then fog SH(U).

Ifg N(U) and ¥ SHg(g(U)), then fog SHg(U).

Remark 2.3. As a consequence of the above theorem, we have that intrinsic functions on U
are both left and right slice hyperholomorphic. As we shall see, the set N (U) is a commutative
real subalgebra (with respect to a suitable product) of SHy(U) and also of SHi(U). This
fact is of crucial importance for the definition of the H* functional calculus.

It is possible to introduce slice hyperholomorphic functions in different ways, see [17]. Using
Definition 2.1, to prove the most important results of this class of functions, such as the
Cauchy formula, we need additional conditions on the open set U that we introduced below.
For any g =u+1i,v H we define the set [q] := {u+iv|i S}. By direct computations it
follows that an element G belongs to [q] if and only if it is of the form § = r='qr for some
r = 0 and that [q] is a 2-sphere.

Definition 2.4. Let U H. We say that U is axially symmetric if, for allu+1iv U, the
whole 2-sphere U+ V] is contained in U.

Definition 2.5. Let U  H be a domain in H. We say that U is a slice domain (s-domain
for short) if U n R is nonempty and if U n C; is a domain in C; for alli S.

We recall that a domain is an open set that is also simply connected.
To define rational functions and the associated rational functional calculus we are in need of
a few more properties of slice hyperholomorphic functions.

Theorem 2.6 (Representation Formula). Let U be an azially symmetric s-domain U H.
Let¥ SHp(U). Choose anyj S. Then the following equality holds for allX =u+iv U:

(Ut iv) = % Futjv) + Fu—jv)| + i%[j[f(u v —fu+jv]. (1)
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Moreover, for all u,v R such that [u+iv] U, the functions

a(u,v) = g[Fu+iv) + Fu—jv)] and pluv) = 2 [ifu-iv)—fu+ivi] (19

depend on u,v only.
Let ¥ SHg(U). Choose anyj S. Then the following equality holds for allX =u+iv U:

. 1 . . 1 . N
f(u+iv) = 3 [f(u +jv)+Tf(u —Jv)} + 3 [[f(u —jv)—f(u —|—jV)]j} i. (15)
Moreover, for allu,v R such that [u+iv] U, the functions

a(u,v) = %{f(u +jv)+Ff(u —jv)} and B(u,v) = %[[f(u —jv)—F(u +jv)]j] (16)

depend on u,v only.

Lemma 2.7 (Splitting Lemma). Let U  H be an open set.
Let £ SHr(U). Then for every i S, and every j S perpendicular to i, there are two
holomorphic functions F,G : U n C; - C; such that for any z =u+ v, it is

fi(z) = F(z) + G(2)].
Let £  SHRg(U). Then for every i S, and every j S, perpendicular to i, there are two
holomorphic functions F,G : U n C; - C; such that for any z =u+ v, it is

fi(z) =F(z) +1G(2).

Remark 2.8. In the Splitting Lemma the two holomorphic functions F and G depend on
the complex plane C; that we consider.

The Cauchy formula for slice hyperholomorphic functions, with a slice hyperholomorphic
kernel, is the key tool to define the S-functional calculus. Such formula has two different
Cauchy kernels according to right or left slice hyperholomorphicity; these kernels have power
series expansions for |q] < [s|: Yo% g"s™!™" (in the left case), and > °° ;s717"q" (in the
right case). The sum of the first series leads to the definition of the left slice hyperholomorphic
Cauchy kernel; analogously the sum of the second series gives the right slice hyperholomorphic
Cauchy kernel.

Definition 2.9. The left slice hyperholomorphic Cauchy kernel is
8;'(s.q) = —(@* = 2Re(s)q + IsI*) "' (@ —35) forq /[s]
and the right slice hyperholomorphic Cauchy kernel is
Sk'(s.4) =—(q—5)(@° — 2Re(s)q +Is*)""  forq / [s].
So we can state the Cauchy formulas:

Theorem 2.10. Let U H be an azially symmetric slice domain such that its boundary
0(U n Cy) in C; consists of a finite number of continuously differentiable Jordan curves. Let
i S and setds; = —ids. If T is left slice hyperholomorphic on an open set that contains U,

then
1

f(q) = o

/ S;'(s,q)ds; f(s) forallg U.
8(U0(Cl)
If £ is right slice hyperholomorphic on an open set that contains U, then
1
/ f(s)ds; Sy (s,q) forallq U.
8(U0(Cl)

T om
The above integrals do not depend neither on the open set U nor on the complex plane C; for
i S.

f(q)
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Theorem 2.11. The left slice hyperholomorphic Cauchy kernel SL‘l(s,q) is left slice hyper-
holomorphic in the variable q and right slice hyperholomorphic in the variable S in its domain
of definition (a similar result holds for S}_zl(s, q)). Moreover, we have S}_zl(S, q) =—S;'(q,s).

In the sequel we will be in need of the following theorem:

Theorem 2.12 (Cauchy’s integrzitheorem). Let U M be an open set, leti S and let D;
be an open subset of U n C; with D; U n C; such that its boundary 0D; consists of a finite
number of continuously differentiable Jordan curves. For any ¥ SHg(U) andg SHp(U),
1t 1s

/ f(s)ds;g(s) =0,
aD;

where ds; = —1i ds.

3. RATIONAL FUNCTIONS AND THEIR FUNCTIONAL CALCULUS

Let V be a two-sided quaternionic Banach space. We denote the set of all bounded quater-
nionic right-linear operators on V. by B(V ). In the quaternionic setting, in particular for
unbounded operators, we have to specify if we are considering a left-linear or a right-linear
operator. When some properties of a quaternionic operator depend just on linearity we simply
say (quaternionic) linear operator and we do not specify the type of linearity. In analogy with
the complex case, we say that a linear operator, whose domain D(T):={v V : Tv V}
is closed if its graph is closed.

Definition 3.1. We define the S-resolvent set of a linear closed operator T as
ps(T):={s H : (T?—=2Re(s)T +|s]*’1)~' B(V)}
where
T2 —2Re(s)T + |s]*1 : D(T?) -V,
and the S-spectrum of T as
0s(T) :=H\pg(T).

If we consider bounded linear operators the S-spectrum is a compact and nonempty set in
H, but in the case of unbounded operators the S-spectrum can be every closed subset of H,
also an empty set. In the sequel, when we consider unbounded operators we will assume that
the S-resolvent set is nonempty.
Forn =0,1,2, ..., the powers of an operator T are defined inductively by the relations T = I,
T'=T and

DT ={v:v D", T"'v. D(T)},

Tow=T(T"!v), v D(T").
Fora, H, =0,...,m, the polynomial

Po(q) =,
/=0

of degree m N, is right slice hyperholomorphic. The natural functional calculus for poly-
nomials is obtained by replacing q by the right (resp. left) linear operator T. We obtain the
right (resp. left) linear quaternionic operator

Pr(T) =) aT":D(T™) - V.
(=0
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Analogous considerations can be done when we consider a left hyperholomorphic polynomial
Pn(q) = >0, q‘ay of degree m N and the right (resp. left) linear quaternionic operator

m
Pn(T)=> Tla,:D(T™) - V
=0
is obtained replacing q by a right (resp. left) linear quaternionic operator T.

An important ingredient in the definition of the H® functional calculus is the rational func-
tional calculus. To define the quaternionic H functional calculus we have to define the
rational functional calculus for intrinsic functions. As we have already observed in Remark
2.3, this class consists of functions that are both left and right slice hyperholomorphic. Thus
we first give the definition of rational left slice hyperholomorphic functions and then we con-
sider the subset of rational intrinsic functions.

Suppose that U H is an axially symmetric S-domain and let f and g : U - H be left
slice hyperholomorphic functions. For any i,j S, with i  j, the Splitting Lemma 2.7
guarantees the existence of four holomorphic functions F,G,H,K : U n C; - C; such that
forallz=x+1iy UnC;

fi(z)=F(2)+G(2)j  6(z)=H(z) + K@) (17)
We define the function f; g;: UnC; > H as
fi 0i(z) = [F(2)H(z) — G(2)K(2)] + [F(2)K(2) + G(z)H(2)]j- (18)

We now note that the Representation Formula provides an extension operator denoted by
ext, see [20], and so can give the following definition:

Definition 3.2. Let U H be an azially symmetric s-domain and let £,9 : U - H be left
slice hyperholomorphic. The function

(f 9)(a) =ext(f; 9:)(a)

defined as the extension of (18) is called the slice hyperholomorphic product of ¥ and g and
is denoted by T g.

Remark 3.3. Let U be an axially symmetric s-domain. The sets SHz(U) and SHg(U)
equipped with the operation of sum and -product turn out to be non commutative, unital,
real algebras. N (U) is a real subalgebra of both of them.

Example 3.4. In the case T and g have power series expansion: > °  q"a, and >~ ,q"b,,
respectively for a,,b, H, then the slice hyperholomorphic product becomes

(Swm) (Xam)-3 0 s )
n=0 n=0 n=0 k=0

Remark 3.5. For more comments on the slice hyperholomorphic product and all its conse-
quences see the book [20].

Let T be as above, and let its restriction to C; be as in (17). We define the function f; :
Un (CZ — (CZ as

fi(2) :=F(2)F(2) + G(2)G(2), (20)
and we set

£2(q) = ext(F7)(a).
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Definition 3.6 (Slice inverse function). Let U  H be an azially symmetric s-domain and
let ¥:U 5 H be a left slice hyperholomorphic function. We define the function £~* as

() = (F*(0)~'F<(a),

where £¢(q) is the slice hyperholomorphic extension of

fi(z) =F(z) — G(2)}.
The function £7* is defined on U outside the zeros of T*.

Let Q(S) be a polynomial (with quaternionic coefficient on the right); then Q~*(S) is a rational
function. Given a polynomial P (S), the quaternionic rational functions are of the form

R(s)=(P Q7)(s),
or
R(s) = (Q™" P)(s),
so, in principle, one should make a choice between right quotient (first case) or left quotients

(second case). In case Q(S) has real coefficients, the two choices are equivalent, and this will
be the case we will consider in this paper.

Definition 3.7 (Rational functional calculus). Let R =P Q™" be a rational function and
assume that R has no poles on the S-spectrum of T. Let T be a closed densely defined operator.
We define the rational functional calculus as:

R(T)= (P Q7))
(or R(T) = (Q™ P)(T)).
The operator R(T) is closed and densely defined and its domain is D(T"™) where
m := max{0, deg P — deg Q}.

Remark 3.8. For our purposes, we will consider intrinsic rational functions defined on U.
In this case

R Ri=RR;=RiR=R; R,
for every R and R; intrinsic rational functions. Moreover, if P (s) and Q(S) are intrinsic poly-
nomial then (P Q7*)(s) = (PQ1)(s) = (Q~'P)(s). Intrinsic rational functions constitute
a real, commutative, subalgebra of both the real algebras SHz(U) and SHz(U).

Example 3.9. An important example of intrinsic rational function, useful in the sequel, is
S k

wio—(25)" &
Note that, for the sake of simplicity, from now on we will write Y(s) instead of Yg(s).
We recall that slice hyperholomorphic rational functions have poles that are real points and /or
spheres. This is compatible with the structure of the S-spectrum of T that consists of real
point and/or spheres, see p.142 in [20].
With @ as above, we have

W(T) = (T(l +T2)‘1>k, kK N

We summarize in the following the properties of the rational functional calculus. The proofs
are similar to the classical results and for this reason we omit them.

Proposition 3.10. Let T be a linear quaternionic operator single valued on a quaternionic
Banach space V. Let P and Q
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(ii) If P(T) s injective and Q =0 then
D(P(T)™) nD(Q(T)) D(P(T)~'Q(T)) n D(Q(T)P(T)™)

and

P(M)™Q(MVv=Q(MP(T)~'v, v D(Q(T))nD(P ()™
(i) Suppose that T is a closed linear operator with ps(T) = . Then P(T) is closed and
P(0s(T)) = as(P(T)).
For rational functions we have

Proposition 3.11. Let T be a linear quaternionic operator single valued on a quaternionic
Banach space V. with ps(T) = . Let0=R =PQ~! and R, = PlQl_1 be intrinsic rational
functions. Then we have:
(i) R(T) is a closed operator.
(ii)) R(@5(T)) 05(R(T)), whereg(T) = 0s(T) {oo} denotes the extended S-spectrum
of T.
(iii) R(T)Ry(T) (RRy)(T) and equality holds if

(deg(P) — deg(Q))(deg(P1) — deg(Q1)) = 0.
(iv) R(T)+ Ri(T) (R+Ry)(T) and equality holds if
deg(P Q1 + P1Q) = max{deg(PQ1), deg(P1Q)}.

4. THE S-FUNCTIONAL CALCULUS FOR QUATERNIONIC OPERATORS OF TYPE 0

As we have mentioned in the introduction we want to show that, at least for a suitable subclass
of closed densely defined operators, we can extend the formulas of the S-functional calculus
for bounded operators. In order to do this we need to define the S-resolvent operators as
follows. Let T be a closed linear operator on a two-sided quaternionic Banach space V and
assume that s pg(T) = , then the operator

Qs(T) := (T2 —2Re(s)T + [s|?1)7!

is called the pseudo-resolvent of T.

We will denote the set of all closed quaternionic right-linear operators on the two-sided
quaternionic Banach space V by K(V ); in the case of left-linear operators we will use the
notation Kz, (V).

Definition 4.1. Let T K(V). The left S-resolvent operator is defined as

$.(s,T) =Qu(T)S=TQ.T). s ps(T), (21)
and the right S-resolvent operator is defined as
SRS, T):=—(T—=15)Q4(T), s ps(T). (22)

In the sequel we will work just with right linear operators and the above S-resolvent opera-
tors are slice hyperholomorphic functions operator-valued and S;*(s, T)v and S;'(s, T)v are
defined for allv V.

Remark 4.2. We point out that in the case T Kp (V) the S-resolvent operators have to be
defined as

S, /(s T)=QuT)5=T), s ps(T), (23)
and the right S-resolvent operator is defined as

Si(s,T) =5Qu(T) —TQu(T), s ps(T). (24)
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The S-resolvent equation has been proved in [6] when the operator T
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In order to define bounded functions of operators of type w, we need to introduce suitable
subclasses of bounded slice hyperholomorphic functions:

Definition 4.8. We define the spaces

0y co/c0 ClSla 0
\PL(SN) = {f SHL (SU) Such th(lt a=> 0, c>0 |f(S)| = W’ fO'f' all S SN}’
0y _ 000 cls|” 0
‘I/R(Su) ={f SH% (SM) such that a >0, c>0 |f(s)] < 1+ |spo for all s Su}:
0y _ 00 (0 cls|” 0
\IJ(SM) ={f N (Su) such that a >0, c>0 |f(s)| = T s for all's S, }.

The following theorem is a crucial step for the definition of the S-functional calculus, because
it shows that the following integrals depend neither on the path that we choose nor on the
complex plane C;, i S.

Theorem 4.9. Let T be an operator of type w. Let i S, and let 82 be as in (26). Choose
a piecewise smooth path 1" in SB n C; that goes from oo™ to coe™®  where w <O < Y. Then
the integrals

1
o FSZI(S,T)dsqu(s), for all @ WL(SY), (27)
%/Fw(s)dsi SFlsT),  forall G Wi(SY), (28)

depend neither on I' nor oni S, and they define bounded operators.

Proof. We reason on the integral (27) since (28) can be treated in a similar way.

The growth estimates on Y and on the resolvent operator imply that the integral (27) exists
and defines a bounded right-linear operator.

The independence of the choice of 8 and of the choice of the path I' in the complex plane C;
follows from Cauchy’s integral theorem.

In order to show that the integral (27) is independent of the choice of the imaginary unit
i S, we take an arbitrary J S with j =1i.

Let B(0,r) the ball centered at the origin with radius r; let ag >0 and 8, (0,m), n N,
we define the sector X(8p,a9) as

¥(80,a9) :={s H:arg(s—a,)=8,}.

Let 8p <8 <8, < and set Uy := X(8;,0) B(0,a9/2) and U, := X(8,,0) B(0,a0/3),
where the indices s and p denote the variable of integration over the boundary of the respective
set.

Suppose that U, and U, are slice domains and 0(Us n C;) and d(U, n C;) are paths that are
contained in the sector.
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Observe that Y(s) is right slice hyperholomorphic on U,, and hence, by Theorem 2.10, we
have

1
Y(T) = ﬁ/ W(s)ds; Sél(S,T) (29)
A(U.NCy)
1
~(enp? dp; S (p.s) | dsiSp'(s, T 30
(2m)? /B(Usnci) (/&)(Upmcj)w(p) Pi Sk (P S)> SiSk (5,T) (30)
1 1
T om dn; | 5 S;'(p,s)ds; Sy'(s, T 31
2n 6(Upm(ci)w(p) P; <2n /EJ(USch-) r (P,8)ds; Sk (s )) (31)
1
W(p)dp; S'(p, T). (32)

21 Jow,ney)

To exchange order of integration we apply the Fubini theorem. The last equation follows as
an application of the S-functional calculus for unbounded operators, see [20, Theorem 4.16.7],

since S;*(p, ©0) = lims_y00 Si' (P, S) = 0. So we get the statement.
O

Thanks to the above theorem the following definitions are well posed.

Definition 4.10 (The S-functional calculus for operators of type w). Let T be an operator
of type w. Leti S, and let SS be the sector defined above. Choose a piecewise smooth path

I'in SB n C; that goes from ooe® to coe™ for v <8 <, then

(T) = %/FSZI(S,T)dsiw(s), for all @ WL(SY), (33)
W(T) ::%/Fw(s)dsislgl(s,T), for all @ Wg(S)). (34)

Remark 4.11. For functions Y that belong to \I/(Sg) both representations can be used,
moreover

W(T) := %/Fw(s)dsisgl(s,T) = %/Fsgl(s,T)ds,-LlJ(s), for all @ W(S)).

If T is an operator of type w, then Y(T), defined in (55) and (56), satisty:
(ay +bd)(T) = ay(T) +bo(T),  for all W,  WL(Sy),

(ay +bd)(T) =aw(T) +bd(T), for all Y,d Yr(Sy).

These equalities can be verified with standard computations.

Theorem 4.12. Let T be an operator of type w. Then
WO)(T) =w(M)$(T),  for all Y W(Sp), ¢ VL(Sy),

WO)(T) =w(MS(T), for all ¢ WVgr(S)), & U(Sp).

Proof. We prove the first relation the second one follows with similar computations. Let
0s(T) U; and Uy be two open sectors that contain the S-spectrum of T and such that
U; 0U; Usand Uy 0Ug Sg. Takep 0(U3nC;)ands 9(Us nC;) and observe that,



THE H* FUNCTIONAL CALCULUS

for i S, the S-resolvent equation (25) implies

VOO =y [ e et [ ST an o)

8(U10<Ci)

— W(s dsi/ SR'(s, T)p
(2m)? /awznci) () a(UNC:) r (&)

15
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5. THE H® FUNCTIONAL CALCULUS BASED ON THE S-SPECTRUM

To define the H®® functional calculus we suppose that T is an operator of type w and moreover
we assume that it is one-to-one and with dense range. Here we will consider slice hyperholo-
morphic functions defined on the open sector Sg, for 0 < w < U < 1 which can grow at

infinity as |s|* and at the origin as |s|7* for k N. This enlarges the class of functions to
which the functional calculus can be applied. Precisely we define:

Definition 5.1 (The set ). Let w be a real number such that 0 < w < 1. We denote by
the set of linear operators T acting on a two sided quaternionic Banach space such that:

(i) T is a linear operator of type w;
(ii) T is one-to-one and with dense range.

Then we define the following function spaces according to the set of operators defined above:
Definition 5.2. Let @ and W be real numbers such that 0 < w < U < T, we set

FL(SS) ={f SHL(SS) such that |F(s)| < C(Is|* + |s| %) for some k>0 and C > 0},
FR(Sg) ={f SHR(SS) such that |F(s)] < C(Is|* +|s|™%) for some k>0 and C > 0}.
F(Sg) ={f N (Sg) such that |£(s)| < C(|s|* +1s|7%) for some k>0 and C > 0}.

To extend the functional calculus we consider a quaternionic two sided Banach space V, the
operators in the class €2, and:
e The non commutative algebra FL(SS) (resp. FR(SB)).
e The S-functional calculus ® for operators of type w
®: WL(S)) (resp. Wp(Sy)) - B(V), ®:0 - o(T).

e The commutative subalgebra of F L(SS) consisting of intrinsic rational functions.

e The functions in FL(SE) have at most polynomial growth. So taken an intrinsic
rational functions Y the operator Y(T) can be defined by the rational functional
calculus. We assume also that Y(T) is injective.

Definition 5.3 (H* functional calculus). Let V be a two-sided quaternionic Banach space
and let T Q. For K N consider the function

wes) = (

For FL(SS) we define the extended functional calculus as

S k+1
1+ s2>

F(T) == (W(T) " (WF)(T). (35)
For FR(SB), and T left linear we define the extended functional calculus as
£(T) = (Fy)(T)(w(T)) (36)

We say that P regularizes f.

Remark 5.4. In the previous definition the operator (YF)(T) (resp. (FY)(T)) is defined
using the S-functional calculus ® for operators of type w, and Y(T) is defined by the rational
functional calculus.

Theorem 5.5. The definition of the functional calculus in (35) and in (36) does not depend
on the choice of the intrinsic rational slice hyperholomorphic function .
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Proof. Let us prove (35). Suppose that @ and @’ are two different regularizers and set

A= W) W) and  Bi= (/(T)) " (WF)(T).
Observe that since the functions ) and |’ commute, because there are intrinsic rational
functions, it is

YTY'(T) = (WE')(T) = W'Y)(T) =" (T)u(T),

S0 we get

It is now easy to see that
A= (Q(T) Hf)(T) = )THWI(T)) T (M) (WF)(T) =
T)) 7 W(T) ™ (Wy'f)(T)
T)) 7 W(T) M w(T)(W'F)(T)
= W(M) " W'H)(T) =B,
where we used the fact that from the product rule, see Proposition 3.11, we have that the
inverse of Y(T) is (1/Y)(T). The proof of (36) follows in a similar way. O

)

We now state an important result for functions in FL(SS) (the same result with obvious
changes holds for functions in Fx(SJ)).

Theorem 5.6. Let T F(SB) and g FL(SS). Then we have
F(T)+9(T) (F+9)(T),
F(T)o(T)  (Fo)(T),
and D(F(T)g(T)) = D((fg)(T)) M D(g(T)).

Proof. Let us take Yy and Y5 that regularize T and g, respectively. Observe that the function
Y := Y1Ys regularize F, g, T + g and Tg because Y, Yy and f commute among themselves.
Observe that

F(T)+9(T) = (WT) T WH)(T) + W(T) " (wg)(T)
W) THWF)(T) + (wg)(T)]
= (WTM) W +9)(T) = (F+9)(T).

We can consider now the product rule

F(T)9(T) = (Wi (1) (W) (T) (W2(T)) " (W20)(T)
(Wa(T)) ™ (W (T)) (Wi F)(T) (w20)(T))]
= (2T ()~ i (T)a(T) (FO))(T)
= (W(T)) " (wfg)(T) = (Fg)(T),
where we have used U := Y;Y3. Regarding the domains it is as in that complex case. g

Remark 5.7. We point out that in this case there is no spectral mapping theorem because
the operator F(T) = (Y(T))~'(YF)(T) can be unbounded even when f is bounded.

The following convergence theorem is stated for functions in SH%O(SS) but it holds also for
functions in SHORO(SS) and is the quaternionic analogue of the theorem in Section 5 in [38].
The proof follows the proof of the convergence theorem in [38, p. 216], we just point out that
the convergence theorem is based on the principle of uniform boundedness that holds also for
quaternionic operators.
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Theorem 5.8 (Convergence theorem). Suppose that 0 < 0w < W < T and that T is a linear
operator of type w such that it is one to one and with dense range. Let T, be a net in SHEO(SS)
and let £ SH(S)) and assume that:

(i) There exists a positive constant M, such that T,(T) =M,
(il) For every 0 <d <A< oo

sup{|fo(s) — F(s)| such that s S and §<|s| <A} - 0.
Then £(T) B(V) and fo(T)u — F(T)u for allu V, moreover f(T) <M.

In the following section we discuss the boundedness of the H* functional calculus.

6. QUADRATIC ESTIMATES AND THE H® FUNCTIONAL CALCULUS

Let H be a right linear quaternionic Hilbert space with an H-valued inner product -,- which
satisfies, for every o, 3 H, and X, y, z H, the relations:

X,y = VY, X,

X, X =0 and x 2:= x,x =0 X =0,

Xa+yB,z = X,z a+ y,z f3,
X,yo+zB =ax,y +B x,z.
Definition 6.1. We will call a subset N H a Hilbert basis if

X,y = 0 forx,y N sothatx=Yy, (37)
X, X =1 forx N so thatx=0, (38)
{x H: x,y =0forally N}= {0} (39)

With a choice of the Hilbert basis N a quaternionic Hilbert space on one side (left or right)
can always been made two-sided. Thus it is not reductive to consider a quaternionic two-sided
Hilbert space and repeat what we have done in the case of a Banach space to define a H*>
functional calculus.

The crucial tool to show the boundedness of the H* functional calculus are the so called
quadratic estimated, see [38].

Definition 6.2 (Quadratic estimate). Let T be a right linear operator of type ® on a quater-
nionic Hilbert space H and let Y \I/(SS) where 0 < 0 < u < 1. We say that T satisfies a
quadratic estimate with respect to P if there exists a positive constant B such that

o0 dt
/ P(tT)u 2TSB2 u? forallu H,
0

where we write U for U 4.

Let us introduce the notation
TS ={0  ¥(S)) : W(t)>0 forallt (0,00)}
and
Wi(s) = w(ts), t (0,00).

Theorem 6.3. Let 0 < w < U < T and assume that T is a right linear operator in ).
Suppose that T and its adjoint T* satisfy the quadratic estimates with respect to the functions
Y and Y \P+(SB). Suppose that T belongs to SHEO(SB). Then the operator ¥(T) is bounded
and there exists a positive constant C such that

f(T) <sC f o forall £ SHY(S)).
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Proof. We follow the proof of Theorem at p. 221 in [38], and we point out the differences.
We observe that we choose the function I, { and n in the space of intrinsic functions \I’+(Sg)
because the pointwise product

d(s) == Y(s)b(s)n(s)

has to be slice hyperholomorphic and moreover 1 has to be such that

o dt
/0 ot = = 1.

R
fnle)= [ @H6)T,

Using the quadratic estimates it follows that there exists a positive constant C such that
f57 R(T) =Cf o
the Convergence Theorem 5.8 gives the formula

f(T)u=lim lim f. g(T)u forall u H

e—0 R—oo

For f SH%"(SS) let us define

where (n,f)(T) is defined by the S-functional calculus

(r]tf)(T):%/FSL‘l(s,T)dsint(s)f(s), forall f W.(S)),

since n;f \I'L(SS) because N is intrinsic. Precisely, the quadratic estimates and some
computations show that there exists a positive constant Cg such that

| for(Mu,v|=<Cs sup (F)(T) u v.

te(0,00)
Since
1 _
MAT) =50 F s [ 716 T) lasil (o)
2m ieS JT
1 C c|s|®
= — f | ZLlds;] ———s—
o € o s
< CT(u,n) f 0.
From the above estimates we get the statement. O

7. THE CASE OF N-TUPLES OF OPERATORS

The notion of slice hyperholomorphicity can be given for Clifford algebra-valued functions, see
[20]. In this section, we recall the main results on this function theory and on the operators
that we will consider later, without giving the details of the proofs (which can be found in
[20]).

7.1. Preliminaries on the function theory. Let R, be the real Clifford algebra over n

imaginary units ey,...,e, satisfying the relations e;e; +e;e; = 0 for i = j and e? = —1.
An element in the Clifford algebra will be denoted by 3" ,eaxa where A = {iy...i,}
P{1,2,...,n}, i} <...<, is a multi-index and e4 = €;,€;,...€;., g = 1. An element
(X0, X1, ..., X,) R 1 will be identified with the element

n
X:XO—I—XZX()—I—ZX]‘E‘)',
Jj=1
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a so-called paravector, in the Clifford algebra R,,. The real part Xy of X will also be denoted
by Re(X). The square of the norm of x ~R"*! is defined by |X|> = X2 + X3 + ... + X2 and
the conjugate of X is

n
)_(:XO_XZXO_ZXjej-
j=1

Let

Siz{l:el)(1+...+enxn : )(%4__’_)(%: 1}
Observe that for i S, we obviously have i = —1. Given an element X = Xg +X R"! we
set

S R if

“ ") any element of S if

then X = U+ i,V with U = Xy and v = [x|. For any element X = u+i,v R"! the set
X :={y R"™ :y=u+iv,i S}

is an (n — 1)-dimensional sphere in R"*!. The vector space R + iR passing through 1 and
i S will be denoted by C; and an element belonging to C; will be indicated by u + iv with
u v R.

Since we identify the set of paravectors with the space R*™!, if U  R"*! is an open set, a
function f: U R L R, can be interpreted as a function of a paravector X.

Definition 7.1 (Slice hyperholomorphic functions). Let U~ R™! be an open set and let
f:U - R, be a real differentiable function. Let1 S and let F; be the restriction of T to the
complex plane C;.
The function ¥ is said to be left slice hyperholomorphic (or slice monogenic) if, for every
i S, it satisfies

% <aa—ufi(u +iv) + iaa—vfi(u + iv)> =0
on U n C;. We denote the set of left slice hyperholomorphic functions on the open set U by
SM(U).
The function T is said to be right slice hyperholomorphic (or right slice monogenic) if, for
every 1 S, it satisfies

1/0 . 0 .
5 <Efi(u +iv) + Efi(u + |v)|> =0
on U nC;. We denote the set of right slice hyperholomorphic functions on the open set U by
SMg(U).

A left (or right) slice hyperholomorphic function that satisfies £(U n C;) C; for anyi S
is called intrinsic. The set of all intrinsic functions will be denoted by N (U).

Remark 7.2. We use the same symbol N (U) to denote intrinsic functions for the quater-
nionic case and for the Clifford algebra case, the meaning is clear from the context and no
confusion arises.

Remark 7.3. Let X be a paravector, then any power series of the form 2, x‘a, with
a, R,, for N, is left slice hyperholomorphic and any power series of the form Y, bext
with by R, for N, is right slice hyperholomorphic. In the case a,, or similarly b, (for all

N {0}) are real numbers the power series define intrinsic functions, where they converge.
They are both left and right slice hyperholomorphic.
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Lemma 7.4 (Splitting Lemma). Let U  R"*! be open and let f : U - R,, be a left slice
hyperholomorphic function. For every i =1y S, letis,..., I, be a completion to a basis of
R,, that satisfies the relation i is+ isi, = —20, . Let T; be the restriction of T to the complex
plane C;. Then there exist 271 holomorphic functions F4 : U nC; — C; such that for every
Z Un (CZ

n—1
fi(z) = ) Fal2)ia
|A[=0
where ig =1y, -+ -1y, for any nonempty subset A={ 1 <...< s} of{2,...,n} and iy = 1.
Similarly, if g : U — H is right slice hyperholomorphic, then there exist 2"~' holomorphic
functions G4 : U n C; - C; such that for everyz U n C;

n—1

0i(z) = > i4Ga(2).

|A]=0

Slice hyperholomorphic functions have good properties when they are defined on suitable
domains whose definition mimics the one in the quaternionic case.

Definition 7.5 (Axially symmetric slice domain). Let U be a domain in R"*1. We say that
U is a slice domain (s-domain for short) if U n R is nonempty and if U n C; is a domain in
C; for alli S. We say that U is axially symmetric if, for all X U, the (n — 1)-sphere [X]
s contained in U.

The crucial result of slice hyperholomorphic functions is the representation formula (or struc-
ture formula), first proved in [16].

Theorem 7.6 (Representation Formula). Let U  R™™! be an azially symmetric s-domain
and let ¥ SMp(U). Then for any vector X =u-+1iyv U the following formula hold:

f(x) = %[f(qu iv) + F(u—iv)] +%[ixi[f(u— iv) — F(u+ iv)]]. (40)
Iff SMg(U) then
f(x) = %[f(u +iv) + Fu=iv)| +%[[f(u —iv) = F(u + )i i (41)

The proof of the following Cauchy formula is based on the Representation Formula.

Theorem 7.7 (The Cauchy formula with slice hyperholomorphic kernel). Let U~ R™H!
be an azially symmetric s-domain. Suppose that (U n C;) is a finite union of continuously

differentiable Jordan curves for every i S and set ds; = —ids.
If T is a (left) slice hyperholomorphic function on a set that contains U then
F(x) = — S (s,x) ds; F(s) (42)
21 Jowney)
where
S; (s, x) i= —(x* = 2Re(s)x + [s|*) ' (x—=3), x [s]. (43)

If £ is a right slice hyperholomorphic function on a set that contains U, then
1

f = —
) 21 Jawncey)

f(s)ds; S;' (s, x) (44)

where
SE'(s,X) := —(x —8)(x? — 2Re(s)x + |s|*)"!,  x [s. (45)
The integrals depend neither on U nor on the imaginary unit i S.
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7.2. Preliminaries on operator theory. In the following we will assume that V is a real
Banach space. We denote by V,, the two-sided Banach module over R,, corresponding to
V. R,. Forp=0,1,...,nlet T, : D(T,) - V be linear operators that do not necessarily
commute among themselves, where D(T,,) denotes the domain of T, which is contained in V .
To define the H* functional calculus for the (n + 1)-tuple of linear operators (To, T1,.., Tpn),
we will consider the so-called operator in paravector form

T=Tp+e1T1+...4+¢e,T,

whose domain is D(T) = (,_, D(T,).

The case of n-tuples of operators is obviously contained in the previous case by setting Tg = 0,
namely when we take (0, Ty, .., Tp,). In the following we will consider n+ 1-tuples of operators,
including operator Ty, because from the point of view of our theory there are no additional
difficulties.

We denote by B(V ) the space of all bounded R-homomorphisms from the Banach space V
into itself endowed with the natural norm denoted by - pg). Let T4 B(V). We define

the operator
T = Z Taen
A

and its action on the generic element of V,,

vV = ZVBeB
B

as

T(v) =) Ta(vpleaes.
AB

The operator T is a right-module homomorphism which is a bounded linear map on V,,. The
set of all such bounded operators is denoted by B(V,,). We define a norm in B(V,,) by setting

T sy =Y, Ta s
A

We denote by K(V,,) the set of those paravector operators T that are linear and closed. The
notion of S-spectrum, S-resolvent set and of S-resolvent operator can be defied in the Clifford
setting as follows.

Definition 7.8. The S-resolvent set ps(T) of T is defined as
ps(T):={s R"™ : Qs«(T) B(V,)}

where
Qs(T) == (T? = 2Re(s)T + [s|*1) 7, (46)
and
T2 —2Re(s)T + |s]*1 : D(T?) - V,.
The S-spectrum 0g(T) of T is defined by
os(T) =R" !\ pg(T).

In the case of n-tuples of operators when T is bounded, i.e. all the components T, are
bounded, then the S-spectrum is a nonempty compact set in R"*1. When at least one of the
operators T, is unbounded then pg(T) can be every closed subset of R™*L. In this case, we
will always assume that the set pg(T) is nonempty.
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Definition 7.9. Let T K(V,). The left S-resolvent operator is defined as

S T):=QuT)s=TQu(T), s ps(T) (47)
and the right S-resolvent operator is defined as
Sp'(s.T):==(T—15Qy(T), s ps(T). (48)

The S-resolvent equation for the case of unbounded operators T has been considered in [11]
for the quaternionic operators but its proof can be easily adapted to the the case of n-tuples
of operators. Let T K(V,,). For s,p pg(T) with s / [p], it is

SR T)S, (. TIv =[[S;' (s, T) =S, ' (0. T)Ip

=3[ (s, T) =S (p, T (p? — 2s0p + ISI*) "'V, v V. (49)

7.3. The rational functional calculus. In the Clifford algebra setting, the definition of
slice hyperholomorphic rational function is slightly more complicated than in the quaternionic
case. To introduce it, we need some preliminary definitions and results.

We begin by defining the slice hyperholomorphic product, which is more involved than in the
quaternionic case.

The slice hyperholomorphic product.

For any i S set i = I; and consider a completion to a basis {iy,...,i,} of R, such that
iglg +iply = —28y. The Splitting Lemma 7.4 guarantees the existence of holomorphic func-
tions F4,G4 : UnC; - C; such that for all z=u+iv U n C;, the restriction to C; of T
and g, denoted by T; and g; respectively, can be written as

fi2) = S Fa@)ia, 62 =Y Gu@)ig,
A B

where A, B are subsets of {2,...,n} and, by definition, iy = 1. We define the function
t; 0;: UnC; - R, as

(f. 9)@) = > (~1)TFa@)Ga@) + 3 (=1)"F Fa(2)Ga(2)
|Aleven |Alodd
+ Y Fa(@Gp@iaiz+ > Fa(2)Gs(2)iais. (50)
|Aleven, B#£A |Alodd,B#A

Then (f; ¢;)(z) is obviously a holomorphic map on C;, and hence its unique slice hyperholo-
morphic extension to U, which can be constructed according to the Representation Formula
7.6, is given by

(f g)(X) :=ext(F; 0;)(X).

Definition 7.10. LetU R be an azially symmetric s-domain and let f,9: U - R,, be
left slice hyperholomorphic functions. The function

(f 9)(x) =ext(fi 9i)(X)
defined as the extension of (7.3) is called the s-monogenic product of ¥ and g. This product
is called -product of T and g.

An analogous definition can be made for right slice hyperholomorphic functions. Since we
will concentrate on intrinsic rational functions in the sequel, which are both left and right
slice hyperholomorphic we will limit ourselves to the left case.

The -inverse function.
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Let U R be an axially symmetric s-domain and let f : U - R, be a left slice hy-
perholomorphic function. Let us consider the restriction f;(z) of f to the plane C; and its
representation given by the Splitting Lemma

) => Fa(z)ia. (51)
A
Let us define the function f¢: U nC; - C; as

ZZFE(Z)A
ZFA Jia= > Fa@)ia— > Fa@)ia+ Y Fa(2)ia,

|A|=0 |Al=1 |A]=2 |A|=3

where the equivalence = is intended as = (mod4), i.e. the congruence modulo 4. Since any
function F 4 is obviously holomorphic it can be uniquely extended to a slice hyperholomorphic
function on U, according to the Representation Formula. Thus we can give the following
definition:

Definition 7.11. Let U R be an azially symmetric s-domain and let £ : U - R,, be a
left slice hyperholomorphic function. The function
£9(x) = ext(FE)(x)
is called the slice hyperholomorphic conjugate of T.
Using the notion of -multiplication of slice hyperholomorphic functions, it is possible to
associate to any slice hyperholomorphic function f its symmetrization denoted by f%. Let
U R"! be an axially symmetric s-domain, let ¥ : U - R,, be a slice hyperholomorphic
function, and let is restriction to C; be as in (51). Here we will use the notation [f;]y to

denote the “scalar” part of the function f;, i.e. the part whose coefficient in the Splitting
Lemma is iy = 1. We define the function f*: U n C; - C; as

fio=[F FC

)

:[<ZB:FB )3 Fal@ila— 3 Fa@la~ X Falla+ 3 Fa@la]

|A|=0 |A]=1 |A]=2 |A|=3

The function f; is holomorphic and hence its unique slice hyperholomorphic extension to U
motivates the following definition:

Definition 7.12. Let U R be an azially symmetric s-domain and let £ : U - R,, be a
slice hyperholomorphic function. The function

£5(x) = ext(F7) ()

defined by the extension of ¥7 = [f; Tf]g from U nC; to the whole U is called the symmetriza-
tion of T.

The following lemma is important for the definition of the -inverse.

Lemma 7.13. Let U R be an azially symmetric s-domain and let €,9 be left slice
hyperholomorphic functions. Then

f'g=1" g=g f°
Moreover, if Zys is the zero set of £°, then
(F) lg=(F5)"t g=g (F)' on U\Z.
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Definition 7.14. Let U R be an azially symmetric s-domain. Let £ : U - R, be a
left slice hyperholomorphic function such that for some i S its restriction f; to the complex
plane C; satisfies the condition

T, £ has values in C,. (52)
We define the function:
T = ext((FF)7HF7)
where 7 = [f; fflo =, T7, and we will call it slice hyperholomorphic inverse of the
function F.

The next proposition shows that the function ¥~* is the inverse of f with respect to the
-product:

Lemma 7.15. Let U R be an azially symmetric s-domain. Let ¥ : U - R,, be an
s-monogenic function such that for some i S we have that €; T{ has values in C;. Then on
U\Z;s we have:

f f=f f =1
Remark 7.16. Note that the -inverse of a slice hyperholomorphic function T is defined

under the additional assumption that that for some i S we have that f; f has values in
C;. This assumption is automatically satisfied, for all i S, by the intrinsic functions.

The rational functional calculus.
Consider a left slice hyperholomorphic polynomial

m
P(x) = Zxéag, where a, R,
£=0
in the paravector variable X. The natural functional calculus is obtained by replacing the
paravector operator X by the paravector operator T = Ty + T1€1 + ... + Tp€,:

P(T)=> T‘a;, where a; R,
=0
whose domain is D(P(T)) = D(T™).

Let Q(S) be a polynomial in the paravector variable s satisfying the condition (52), i.e.
Q; Qf has values in C; for every i S. Then Q™*(s) is a rational function. If we use the
-multiplication and if P(S) is a polynomial then rational functions are of the form

R(s) =P(s) Q7(s)
or
R(s) =Q7"(s) P(s).
In the sequel we will be interested in the functional calculus for intrinsic rational functions,

SO
_ _ P(s)
P(s) Q7"(s)=Q "(s) P(s)=———.
5) Q=) P)= g4
Let R be a rational function and assume that R has no poles on the S-spectrum of T ; suppose
that T is a closed densely defined paravector operator and define

R(T)=P(T) Q*(T).
This operator is also closed and densely defined and its domain is D(T™) where

m := max{0, deg P — deg Q}.
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We point out the 