A CLASS OF UNBOUNDED FOURIER MULTIPLIERS ON THE UNIT
COMPLEX BALL

PENGTAO LI, JIANHAO LV, AND TAO QIAN

AgsTRACT. In this paper, we introduce a class of Fourier multiplier operators M,
on -—complex unit sphere, where the symbol » € H*(S,). We obtained the
Sobolev boundedness of M,,. Our result implies that the operators M, take a role
of fractional differential operators on JB.

1. INTRODUCTION

In this paper, we introduce a class of unbounded holomorphic Fourier multi-
pliers Mj, on +4—complex unit sphere. We further study the boundedness of M,
on Sobolev spaces. Our results generalize the theory of Fourier multipliers on
Lipschitz curves in C to #—complex unit sphere B .. We refer the reader to Gaudry-
Qian-Wang [3], Mclntosh-Qian [8], and Qian [9, 10] for further information on
multipliers on Lipschitz curves.

Our motivation originates from the following example on the unit sphere in C*.
The explicit formula of the Cauchy-Szego kernel

- 1 1
H (,{f) = _.
‘ W21 (1 - &)
Lett ;} denote the orthonormal system in the space of holomorphic functions in
B.. The following result is well-known.

o Ny
(L.1) H(46) =) p7 13 16), B¢ e b,

0 =1
See Theorem 2.1 and (2.4) below for details. Formally, (1.1) can be seen as the
special case of (1.2) below. Let S, be the sector defined as

Su={€C: s 0and|arg {< w).

Assume that
(1) b is holomorphic on S ,;
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(2) b is bounded near the origin;
(3) b3 < CL¥ for [ +> 1.
We consider the function:

00 Ny
(1.2) Hy(48) = ) b4 )7 13 0.
w1 =1

If b(_3 = 1, then (1.2) becomes (1.1). For s = 0, Cowling-Qian [1] introduced a
class of bounded holomorphic multipliers on L*(B ). In this paper, we consider
the case # # 0. For this case, b is unbounded on { <: | > 1}. We prove that if
b e H*(S ), then

_ Cy
|Hp(46)] = =
S Il — &[>

See Theorem 3.4.

In Section 4, we introduce a class of Fourier multipliers M), with b € H*(S ), 5 #
0. Unlike the ones of Cowling-Qian [1], our multipliers » are unbounded on S ,.
Take b( 4 = 4. Plancherel’s theorem implies that M), is not bounded on L?(9B.,).
Hence for such M, we need to consider their boundedness on some function spaces
with higher regularity. Let ,s € [0,00). We prove that if b € H*(S,), M, is
bounded from Sobolev spacel,: - *5(6B.) to Sobolev spaceq ” * (0B ,), 1 <+ < oo.
Our result implies that the operators M), take a role of fractional differential opera-
tors on JB.. See Theorem 4.5.

The rest of this paper is organized as follows. In Section 2, we state some
basic preliminaries and notations which will be used in the sequel. In Section 3,
we estimate the kernels generated by holomorphic multipliers » € H*(S,). The
Sobolev boundedness of the operators M, is given in Section 4.

N} 210 % U ~ V represents that there is a constant ¢ > 0 such thate ™'V < U <
¢V whose right inequality is also written as U < V. Similarly, one writes V > U for
V>cU.

2. PRELIMINARIES AND NOTATIONS

In this section we state some preliminaries and notations and refer the reader to
Gong [4], Hua [5] and Rudin [13] for further information. We use _Zas a general
element of C* 1e. <= (4,---,.4), $€ C, s =1,2,---,4 # > 2. Denote
2= [7%,---7Z]. The notation Zis considered to be a row vector. Denote by B, the

# 172
open unit ball { 2€ C*: | f < 1}, where | { = ( D |,f.'{2) / . The unit sphere in C*is
=1
denoted by
OB, =" ={weC: |t=1].

The open ball centered at <with radius will be denoted by B(_% ). A general ele-

ment on 0B, is usually denoted by £. The constant w; ., involved in the Cauchy-

Szego kernel is the surface area of 9B, and is equal to % For ’é‘w € C™ we use
U

the notation /w =Y ,f»'.wq The theory developed in this paper is relevant to the
w1
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radial Dirac operator
50

Now we state some basis knowledge of basis functions in the space of holomor-
phic function in B, and some relevant function spaces on 0B ,. We refer to Hua [5]
for details. Let #be a nonnegative integer. We consider the colum vector £4 with
components

<4
TR O IR
The dimension of £% is

1
Ng= ;-i(-il+ 1):-(u+ a—1)=C?%

L]
g1

Let+! zand+!o(¢) be the Lebesgue volume element of C* and the Lebesgue area
element of 0B ,, respectively. Define

H= f T
B.

H*= f {9 - %10(e).
0B,

It is easy to prove that H *and H,*are positive definite Hermitian matrices of order
N 4 There exists a matrix I such that

" H®T = A,
(2.1) — 1‘!
Ir-HYT' =1,
where A = [B}%---,B]] is a diagonal matrix and / is the identity matrix. Set
fa=&%T.
Denote by* ¥ 3 the components of the vectors 4. From (2.1), we can see that
(22) [ 15 i0e=os o081
B,
(2.3) f > X XY o) =64 Oy
B,

The following theorem is well known.
Theorem 2.1. T'je s_sgpio  *ig 10#
(B> % «=0.1,2, ,v=12 Ny
wacort ggeqg j010 hags pehiiy jet ace o, JoRo hio* e Hg 10 % tuB., Tje

nggwr S8 g joi0 hog bL g cott gee iy jed ace 0, COHIHOME HIg 10K
k.
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The explicit formula of the Cauchy-Szegé kernel

— 1 1
H({E) = —
49 W21 (1 - &)™

on 9B, was first deduced in Hua [5] by using the system+ % and the relation

© N _
(24) H(46) =) »7 13 ), «Bafeb,
=0 =1

For 4w € B, J 0B, the nonisotropic distance4!(_4w) is defined as

A sw) = 1- @]

It can be easily shown that4!(:, -) is a metric on dB,. For & € 9B, and € > 0, we
define the ball corresponding to4!(-, -) as

S(é.e) = {n € 9B +1En) < .

The complement set of S (¢, €) in 0B, is denoted by S (&, €).

Set
A= {!_ by is holomorphic in B(0, 1 + ¢) for some § > ()}.
If . € A, then
o Ny
) = 3 % )
REEDIPNT M EL
0 =0

where ¢ 4 are the Fourier coefficients of p

‘qr‘/:f + 8, (EYlo(§),
o8B, r

and for any positive integer g, the series

=z

o

i T AL
w0 :

=]

is uniformally and absolutely convergent in any compact ball contained in B(0, 1 +
0) in which _ is defined.

Denote by U the unitary group of C* consisting of all unitary operators on the
Hilbert space C*under the complex inner product <,(,'“w> = ’w_’ . These are the linear
operators  that preserve inner products:

C )=

Clear]y, U is a compact subset of O(24). It is easy to verify that A is invariant
under € U. If . € A, then _ is defined by its values on dB,. In Section 3, we
treat lom , as identical to . €
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3. THE KERNEL GENERATED BY HOLOMORPHIC MULTIPLIERS
Set
So = {J»'E C| 4+ 0and|arg {< w},
Sum = {4 C| 20,|Re(J < rand |arg(+ ) < w},
hootm = {€C| % 0,|Re() < mand Im()> 0} U S (),
H, = [€C| = wey o).
The following function space is relevant:

Definition 3.1. Let —1 < 5 < o0, H*(S,) is defined as the set of all holomorphic
functions in S, such that

(1) bis bounded for | < 1;
@) b(H < Cul ¥, %€ 8,0 <p < .

Rena #®3.2. The classes H*(S ) are generalizations of H*(S,) which is intro-
duced by A. MclIntosh and his collaborators. We refer to Li-McIntosh-Semmes
[6], MclIntosh [7], McIntosh-Qian [8], Qian [12] and the reference therein for fur-
ther information on H*(S ) .

Let -
()= b(ak
w1

Lemma 3.3. L; b e H"'(Sw), -1 <& < oo Treupy caube jogono* jHog ~,

y,e%!&,!on. Mo eo-e, 0 O<u<py <waw'yg=0,1,2,...,
dV Cui!
d’ SMpt, ) 11— g

e €00 ) = min{3, tan(u, &' }; C £ jecogays vuDefijgwu3.l.
P 00,. Let
' w={eC:m(3>0} Js,[ J-Su).
hoo=, o {,JE C: —-mr<Re< 7r}

and py is the ray exp(#6), 0 < oo, where 6 is chosen so that py C S ,. Define

1
Yp( 3= f exp(&.9p(&)dE, € ),
21 Joo) {

where exp(«.€) is exponentially decaying as & — oo along py. Then we get

GD e = |5

1 )
— f exp(# 3 1+ b(&)d |
p(6)

C, 0 ' '
s Z_Mf exp(— |-#sin(@ + arg H)( |-p*d( |-p*
T Jo
s Cp,
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which implies [¥,( 9| < 1/|.#**. Define

Up( ) =2n Z W, 2ur), ‘€ U Qo +4,0).

It is easy to see that ¢, is holomorphically and 27 -periodically defined in the
described region, and |y,( 13 < 1/ |+, Let

log
ep(3 = l/’h(%))-

For <e
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P 00,. Recall that
IEEDW L E:
1

“lop() =D (4 =
«l

Then we have

1 - (#-1)
o 1)!( Yen( ) = s 1)'217(«;(% a 1)(ut 4-2)...(a+ 1) *
(-u+ — 1)!
= b
Z o
o (et - 1)(44f a— 2)(u+ 1)-i4b(‘i .
4
Therefore,
1 el (1) 3 (st = 1)t a=2)(a+ 1), o
(2 1)[( @) e Zb(g 4 (&)

N

Y A>T ¥ 10
w? 1; Z R 3

=1

w21 Hp(4E).

O
By [10, Theorem 3], we could obtain the following result.
/ .
Theorem 3.5. lb‘ £ be a-u «uk; L‘eyuk e. I be H(Su+),
Naq
Hy(46) = ZMZ’ 13 L&), €B, £€dB,
=1
i _
_ G|l - g +1]
|D"H,(48)| < —
M, w1 — &'
P oo, The proof is similar to Theorem 3.4. we omit it. O

4. SOBOLEV SPACES AND UNBOUNDED FOURIER MULTIPLIERS

4.1. Integral representation of multipliers. Given » € H*(S,). We define an
Fourier multiplier operator Mj : A — A by

00 Ny
My( )& = ) b(4) @ T6). £ OB,
L 3! =0

where {¢ 4} are the Fourier coefficients of the test function , € A.
For the above operator M), a Plemelj type formula holds.
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Theorem 4.1. l; be H(S,),s>0. Taw bi(3 = _2"b(3 whe e = [5] + 1.
(24 ego M, s> b1 g y;t age*r esswou Fo ; €A,

My( &) = gg(l)[ fs r(&g)Hbl(f,ﬁ)D,? RG2G)
1)@ [y Evion)]
Se(&.e)

whe e qu:,g) Hy (&, q¥lo(n) s a bo*’*!&!;’; 0 U0, EedB aue.

P 00, Let
(=) Nao
My()06) = ) b(4 ) ¢ @ Tpé). £€dB.,
w1 =1

where

co/= | > A, (do(m).
0B r

We can see that

DM = %)
= Y L3N Lo LN
el a al T
= R
- u

which implies that D% %= % % Then we have

2t qz f > Ypg3 ), ()do(n)

My(,)(p8)

2
i TZ f Tpe) 4 ) ()do()

mb— )D¥ 1)()d()
; ,Zf Apé m, (mdo(y

By integration by parts,

M 06 = D h(a f T DY i)
wl

= > b4
= b1 VDY U b b s

w1
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For any £ > 0, we have

Mo )pE) = fs o o oE DD ()
S R SRR RO
£ Dp@ [ Hp o)
’ S.e)
= II(P’ 8) + 12(p’ 8) + Dgll_(é‘)l3(p’ 8)9
where
heo) = [ HalenDy (o,
Se(é.e)
hip.e) = Hy (0, )=D2 (€) + DI} ()dor(,
) - F
Kp.e) = Hy (0, o).
S(.e)

For p — 1 — 0, we have

lim Hy, (p¢, Dy | (mdo ()
p—1-0 Jge )

[ @y oo
Se(&.e)

lim [
pigqo 1(0,€)

Now we consider I>(p, €). Let £ = [1,0,...,0]. For n € 9B, write
/ /

0 / 4 ‘
rll: e ”72=72’773='39""’7'1/:—v]/;
Foob ) I
{': ['2"3a ... 9—-11]-
/ . )
For such n € 9B, —l/ =1 — 2. Without loss of generality, assume & = 1. We get

|1 - &7

which implies that

Poi- ) =101 - coso) +( sing)?1 < g,

The above estimate implies
_ L/ _ 2 1+ - &
NS {77 | Zf=1- “,cosf > 2—}
Since

2 _ 4
<cosf<1,

we obtain 1 — < &2 and then

NS DI NS RPN Y S
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Denote

1+ 2-¢*
a =a( ,&) = arccos — )

Since (1 - P <&*and 1 - ‘;,,O(arccosz e geta = O(?). Tt is easy to see
S

= P+ ) 1
-2

1+ 2-2 cos®)+(1— ?)
2—-2 cos®

& —nl?

and

oMEm) = 1+ 2-2 cosé
2-2 cos®)—(1- 2
E—nl =1+ )(1-),

that is,+1>(£, ) < |¢€ — . Because
&R = [1+ 2=2 cosO]'?>1-
then we have 1 — <+2(&,7), so
€= <eB@Em+ L+ yPE).
Since+?(£,1) < 2, then
€~ > < 2EE ) +2E ) = 4P E ),

that is
&€ —nl < 2UE, ).

Since r € A, we have

,(&) — Dl < 1&g —nl SAUE ).

Forp € (0,1)
ne.ol < [ leen],© - i
S(&.8)
[ D o
see 11— Eml"
1 Ji
< L/§232—84\f—‘: |1 _ elg|-u—1/2d9d,.
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For =2,
1 1 1 1 N
— ————df < —f—d@
o —a|1— 6'9’2_1/2 (2ﬂ _/"1_ C‘H|2 ]
3/4
1 f” 1
— ——df
[2”‘ |- e ]
Ly
< | _.
2 (1- 2)3/4
Then we get
1 /
L (p, < a___— 4
o) < L/Szgz_gﬂ T
1 /
e
> .i/stz—{;A (—:)3/4
1 V2g2—gt
_ ~
= & \f(; 7 3/}
~
S €-0

For #> 2, we have
1/2-2
=" I

1
£ |1 _ C‘B’ﬂ—l/Zde S ﬁ |1 _ 6‘9|44—1/2 |1 _ 2|-it—l/2—2d9
1 d 1
|1 _ 2|-1:—1/2—1 f_‘n ’1 _ en9|2d0
1

A

then we get

V2=
1
Ib(p.e)l < f L 5md s V2 0.
0 -~

Now we prove if p — 1 -0, I3(p, &) has a limit uniformly bounded for & near 0.

Integrating as before, we have

Iip,e) = S(g)Hbl(Pé’,ﬁ)dU(n)

w1 (3-1) Ji
L L dod—.
L/S282—84 »[: ‘1% )) l:p e

Let 5 = p €. Then ds = 1sd6. We get

e f

v 1 (1) /
I3(p.e) = (7 on @) " did]
—ySZaZ—s“ pe™
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By integration by parts, the inside integral with respect to the variabl; becomes

-zo—l‘p ) ("klj
f:’( b} ) I}TEX]&%_.T].I
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On the other hand

(u— 1)1f = ,(w—1)!f¢h*(,ﬁ=peﬂd9
p e —a

1, (whenp — 0)

/
f L(p ,a)d—.
,ySZsz—a“

4.2. Sobolev spaces on 0B, via Fourier mulitpliers. Sobolev spaces on the 4
complex unit sphere dB , are defined as follows. We define the fractional integral
operator J* on 9B, as follows. Let

A

that implies

O

o Ny
L= e d
0 =0
For —oo < # < o0, the operator Z* is defined by
o Ny
I ()= dcd X
For 5 € Z,, we can see that the operators 7* become the ordinary differential
operators with higher orders.

Theorem 4.2. Lg s € Z,. D", = I" ouL*(0B.).

P oo,. Without loss of generality, we assume that € A. Then

o Ny

REEDIPNTHE

«0 =0
where ¢ 4 are the Fourier coefficients of b

cy'= f » 9, @10 @),
OB .

So

D, (3 ; fa 20, @0O 30

Z &;Z f RN N

O
Definition 4.3. Let s € [0, +o0). The Sobolev norm || - Il, 2+(om,) ON 0B , is defined
as
1, 2508 = Il < oo
The Sobolev spaces on OB is defined as the closure of A under the norm || -
I, 235, that isk, >*(9B.) = A2
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Renw #4.4.



UNBOUNDED FOURIER MULTIPLIERS ON THE UNIT COMPLEX BALL 15

[6] Li C, McIntosh A, Semmes S. Convolution singular integrals on Lipschitz surfaces. J Amer
Math Soc, 1992, 5: 455-481.

[7]1 McIntosh A. Operators which have an H,,—functional calculus. Miniconference on Operator
Theory and Partial Differential Equations, 1986, Proceedings of the Center for Mathematical
Analysis, ANU, Canberra, 14, 1986.

[8] MclIntosh A, Qian T. Convolution singular integral operators on Lipschitz curves. in Lecture
Notes In Math. 1494, Springer, 1991,142-162.

[9] Qian T. Singular integrals with holomorphic kernels and H*—Fourier multipliers on star-shaped
Lipschitz curves. Studia Math, 1997, 123: 195-216.

[10] Qian T. A holomorphic extension result. Complex Variables, 1996, 32: 58-77.

[11] Qian T. Generalization of Fueter’s result to R**'. Rend Mat Acc Lincei, 1997, 8: 111-117.

[12] Qian T. Fourier analysis on starlike Lipschitz surfaces. J Funct Anal, 2001, 183: 370-412.

[13] Rudin W. Function Theory in the Unit Ball of C* Grundlehren der Mathematischen Wis-
senschaften, 241, Springer-Verlag, New York-Berlin, 1980.

DEPARTMENT OF MATHEMATICS, SHANTOU UNIVERSITY, SHANTOU, GUANGDONG 515063, CHINA
E-nogat! ess: ptli@stu.edu.cn

Facurry oF SCcIENCE AND TECHNOLOGY, UNIVERSITY OF MAcaU, Macau, CHINA
E-nogat! ess: mb15553@umac.mo

Facurry oF SciENCE AND TECHNOLOGY, UNIVERSITY OF MAcAU, MAcau, CHINA
E-nagat! ess: £sttq@umac.mo



