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On sparse representation of analytic signal in
Hardy space

Shuang Li*† and Tao Qian
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This paper is concerned with the sparse representation of analytic signal in Hardy space H2.D/, where D is the open unit
disk in the complex plane. In recent years, adaptive Fourier decomposition has attracted considerable attention in the
area of signal analysis in H2.D/. As a continuation of adaptive Fourier decomposition-related studies, this paper proves
rapid decay properties of singular values of the dictionary. The rapid decay properties lay a foundation for applications of
compressed sensing based on this dictionary. Through Hardy space decomposition, this program contributes to sparse
representations of signals in the most commonly used function spaces, namely, the spaces of square integrable func-
tions in various contexts. Numerical examples are given in which both compressed sensing and `1-minimization are used.
Copyright © 2013 John Wiley & Sons, Ltd.
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1. Introduction

Sparse representation of signals has long been of interest. Our study originates from a series of recent results on analytic signal decom-
position and adaptive rational approximation by Qian et al. where the concept of adaptive Fourier decomposition (AFD) was introduced
[1–4]. By maximal projection principle [1], AFD yields an approximation using only a few elements chosen adaptively from the set of
shifted Cauchy kernels

D D
(

ea : ea.z/ D
p

1 � jaj2

1 � az
, a 2 D

)
. (1)

The parameters fang of fean g do not necessarily satisfy the hyperbolic nonseparability condition

1X
kD1

.1 � jak j/ D 1

which plays a fundamental role in the study of the Takenaka–Malmquist basis fBng1
nD1 of H2.D/,

Bn.z/ D Bfa1,:::,ang.z/ , 1

2�

p
1 � janj2

1 � Nanz

n�1Y
kD1

z � ak

1 � Nakz
.

The AFD is motivated by matching pursuit (MP), which is a greedy algorithm that selects the dictionary atoms sequentially. A typical
MP is a substitution of the following representation problem

min kxk0 subject to s D Dx. (2)

The problem is NP-hard which means non-deterministic polynomial-time hard in general [5–7] because it requires combinatorial search
through all the combinations of columns from the dictionary D. Thus, it is necessary to rely on good but not optimal approximations
with computational algorithms. Basis pursuit (BP) is another substitution to achieve this goal. Instead of (2), BP suggests solving an
`1-minimization problem

min kxk1 subject to s D Dx. (3)
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than a holomorphic function on the disk D. H2.D/ is a complete subspace of L2.0, 2�/, which is the closure of the set formed by finite
linear combinations of feintg1

nD0, and it inherits the inner product

hf , gi D 1

2�

Z 2�

0
f .eit/Ng.eit/dt, 8f , g 2 H2.D/.

Moreover, H2.D/ is equipped with reproducing kernels

K D
�

ka : ka.z/ D 1

1 � Naz
, a 2 D

�
, (11)

which gives

f .a/ D hf , kai, 8f 2 H2.D/. (12)

In fact, Equation (12) can be derived by the Cauchy integral formula, that is,

hf , kai D 1

2�

Z 2�

0
f .eit/

1

1 � Naeit
dt

D 1

2� i

Z
@D

f .�/
1

� � a
d�

D f .a/.

Each ea 2 D (1) is the normalized reproducing kernel ka 2 K . That means

ea D ka

kkak D kaphka , kai D ka

q
1 � jaj2.

We next prove that D is a dictionary of Hardy space H2.D/. A dictionary [21] is defined as a family of parameterized vectors
G D fg� g�2� in a Hilbert space H such that kg� k D 1 and spanG D H. Each g� 2 G is usually called an atom.

Lemma 2.1
The set D (1) is a dictionary of H2.D/.

Proof
It is obvious that with ea 2 H2.D/, keak2 D 1, and spanD � H2.D/, we need only to show spanD D H2.D/. For any f 2 H2.D/,
hf , eai Dp

1 � jaj2f .a/. Therefore, hf , eai D 0 implies f .a/ D 0, which yields spanD? D f0g. So, we obtain that spanD D H2.D/. �

Here, we state the following three lemmas that will be used in Section 3 .

Lemma 2.2
For any fixed point a 2 D, he�a , e�ai D he��a , eai D hea , e��ai where j�j D j� j D 1.

Proof

he�a, e�ai D 1 � jaj2

1 � ��jaj2
D he��a, eai D hea, e��a
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In general, we have

Z 2�

0

q
1 � r2

1

q
1 � r2

2

1 � r1r2ei�
e�in� d�

2�
D rn

1 rn
2

q
1 � r2

1

q
1 � r2

2

provided that r1 < 1, r2 < 1. �

Lemma 2.4 (Ky Fan’s maximum principle [22])
Let A be any Hermitian operator, then for k D 1, 2, : : : , n, we have

kX
jD1

	j.A/ D max
kX

jD1

hAxj , xji

where eigenvalues 	1.A/ � 	2.A/ � � � � � 	n.A/, and the maximum is taken over all orthonormal k-tuples fx1, : : : , xkg.

We introduce some notations. Given an analytic signal s 2 H2.D/ and the dictionary D , the representation problem has the form

s D
X
a2D

xaea.

Nevertheless, all the continuous-time signals s and ea0s should be discretized because computers can only process discrete values. Let
T D ftk : 0 D t1 < t2 <, � � � , < tM D 2� , k D 1, 2, : : : , M, 
t D tkC1 � tk D 1=.M � 1/g. For any a 2 D, we sample ea on T to obtain an
M-dimensional column vector va , namely,

va D �
ea.t1/ ea.t2/ � � � ea.tM/

�T
. (13)

Denote ea as the normalized vector of va, that is, ea D va=kvak. Sample s on T , we have

s D �
s.t1/ s.t2/ � � � s.tM/

�T
. (14)

Let D 2 CM�N be the dictionary matrix of D , viz.

D D
�

ea0 ea1 � � � eaN�1

	
. (15)

Then, the representation problem in discrete-time situation can be written as

s D Dx (16)

where x is the vector of coefficients and M < N. Throughout this paper, Equation (16) is our basic model, from which two facts can be
derived. One is that the more columns D are present, the sparser representation follows . The other is the solutions of (16) are strongly
related with the positions of parameters a0, : : : , aN�1. Intuitively, we should select fakgN�1

kD0 in some manner equally spaced to reflect
the information of the whole unit circle. Besides, the singular values distribution should be analyzed in the sense of N tending to infinity.
Denote

H D D�D D

0BBBB@
ea0

ea1

...
eaN�1

1CCCCA
�

ea0 ea1 � � � eaN�1

	
. (17)

In Section 3, we will study the eigenvalues of H, which are squares of the singular values of D .

3. Main results

Let H be a Hermitian matrix with entries Hij D heaj�1 , eai�1 i; it is easy to verify

heaj�1 , eai�1 i ! heaj�1 , eai�1 i, .M ! 1/.

We use the eigenvalues of H to estimate the eigenvalues of H because the eigenvalues of a Hermitian matrix depend continuously on
its entries [22].

2
3

0
0
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It is not hard to prove

�n

N
D 1

N2

N�1X
mD0

Sn
m ! 1

2
.1 � r2/r2n, .N ! 1/. (20)

Because

1

N
hHxn , xni D 1

N

�hBxn, xni C hB�xn, xni � hxn , xni�D 1

N

�
�n C �n � 1

�
,

then

1

N

l�1X
nD0

hHxn , xni D 1

N

l�1X
nD0

�
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and

1

2
.rk C sk/ �

p
rksk > rksk , r, s 2 .0, 1/,

then we have

1

2
.log.1 � r/ C log.1 � s// < �

1X
kD1

rksk

k
D log.1 � rs/, r, s 2 .0, 1/.

Therefore, p
1 � r2

p
1 � s2 < 2 exp

�
1

2
.log.1 � r/ C log.1 � s//

�
< 2 exp.log.1 � rs// D 2.1 � rs/, r, s 2 .0, 1/.

That is,

0 � f .r, s/ < 2, r, s 2 Œ0, 1/.

Obviously, f .r, s/ D 0 if r D 1, s 2 Œ0, 1/ or s D 1, r 2 Œ0, 1/. Hence, 0 � f .r, s/ < 2 on Œ0, 1� � Œ0, 1�nf.1, 1/g
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Theorem 3
Suppose N points fakgN�1

kD0 are selected as previously discussed. Let H be a Hermitian matrix with entries Hij D heaj�1 , eai�1 i, i, j 2
f1, 2, : : : , Ng. Let 	1 � 	2 � � � � � 	N be eigenvalues of H, then we have

lim
N1!1
N2!1

Pl
kD1 	k

N
� 1 � 1

2l C 1
. (23)

Proof
H is a blocked matrix as follows:

H D

0BBBBBBBB@

B�
1 B1 B�

1 B2 B�
1 B3 : : : B�

1 BN1

B�
2 B1 B�

2 B2 B�
2 B3 : : : B�

2 BN1

B�
3 B1 B�

3 B2 B�
3 B3 : : : B�

3 BN1

...
...

...
...

...

B�
N1

B1 B�
N1

B2 B�
N1

B3 : : : B�
N1

BN1

1CCCCCCCCA
,

where each block B�
p Bq 2 CN2�N2 , p, q 2 f1, 2, � � � , N1g. Denote that

�!
� n , 1p

2

B�

N 2 1

B��

N 2
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then we can obtain

1

N1

��!
fm

	�
R
��!

fm

	
D 1

N1

N1X
pD1

N1X
qD1

rm
p rm

q

q
1 � r2

p

q
1 � r2

q
�!
fm.p/

�!
fm.q/

!
Z 1

0

Z 1

0
rmsm

p
1 � r2

p
1 � s2fm.r/fm.s/drds

D
�Z 1

0
rm
p

1 � r2fm.r/dr

�2

D
Z 1

0
r2m.1 � r2/dr

D 1

2m C 1
� 1

2m C 3
.

Therefore,

1

N

��!
fk ˝ �!

� k
	�

H
��!

fk ˝ �!
� k
	

! 1

2k C 1
� 1

2k C 3
, (26)

as N1 ! 1, N2 ! 1. Notice that D�!
fk1 ˝ �!

� k1 ,
�!
fk2 ˝ �!

� k2
E

! ık1,k2 , .N1 ! 1, N2 ! 1/, (27)

hence, by Ky-Fan’s maximal principle, in the sense of taking limits, we have

lim
N1!1,
N2!1

Pl
kD1 	k

N
�

l�1X
kD0

�
1

2k C 1
� 1

2k C 3

�
D 1 � 1

2l C 1
. (28)!1v

�
1

kk 1�
D

1�
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We sample s to obtain a vector s of length M D 1000 as (14). Choose K D p
3000 � 55 and K D 2

p
3000 � 110, respectively. The

SVD of D gives U and V . Solving (35) and (36), we derive the optimal solution y� , which is a sparse vector. The original signal s can be
recovered by �

ReD �ImD
ImD ReD

�
y� (37)

as shown in Figures 6 and 7.

4.2. Example 2

s.z/ D ez2
. (38)

We do the same thing as in Example 1, as shown in Figures 8 and 9.
In conclusion, our dictionary does give sparse representations of analytic signals in H2.D/, so the CS technique works almost as well

as BP, and CS takes much less time.
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