Sufficient conditions that the shift-invariant system is a frame for $L^2(\mathbb{R}^n)^1$

Dengfeng Li

(Institute of Applied Mathematics, College of Mathematics and Information Sciences Henan University, Kaifeng 475001, China) E-mail: d°i@henu.edu.cn

Tao Qian

(Department of Mathematics, Faculty of Science and Technology University of Macau, Taipa, Macao, China) E-mail: fsttg@umac.mo

Abstract. The main contribution of this paper is twofold. First, some new su±cient conditions, under which the shift-invariant system is a frame for $L^2(\mathbb{R}^n)$, were established. Second, those su±cient conditions are used to obtain some new results about Gabor frames.

2000 Mathematics Subject Classification. 42C15, 42C40. **Keywords.** Shift-invariant system, frame, su±cient condition.

1. Introduction

The theory of frames, or stable redundant non-orthogonal expansions in Hilbert spaces, introduced by $Du \pm n$ and $Schae^{\otimes}er$ ([1]), plays an important role in wavelet theory ([2-3]) as well as in Gabor analysis ([4-6]) for functions in $L^2(\mathbb{R}^n)$. Traditionally, frames were used in signal processing because of their resilience to additive, resilience to quantization and because they give greater °exibility to capture important signal characteristic([7-8]). Today, frame theory has a myriad of applications in pure mathematics, applied mathematics and even wireless communication ([9-10]).

In [11], by the study of shift-invariant subspaces of $L^2(\mathbb{R}^n)$, the author presented a general result to characterize tight frame generators for the shift-invariant subspaces. Some applications of this general result are then obtained, among which are the characterization of tight wavelet frames and tight Gabor frames.

In [12], some necessary and su±cient conditions ensuring that the shift-invariant system is a frame for $L^2(\mathbb{R}^n)$ were established, and then some known results about wavelet frames and Gabor frames were obtained by applying these conditions.

¹The work is partly supported by the National Natural Science Foundation of China (No. 61071189). Part of this work was done while the ⁻rst author was visiting university of Macau. He thanks the University for hospitality and supports during the visit.

In present paper, we will give some new su±cient conditions under which the shiftinvariant system is a frame for $L^2(\mathbb{R}^n)$. As some applications, the results are used to obtain some new conclusions about Gabor frames.

This paper is organized as follows. Section 2 includes some notations, de⁻nitions and auxiliary results. In order to prove the main results, some lemmas are given in Section 3. Section 4 is devoted to the discussion of $su\pm cient$ conditions for the shift-invariant system to be a frame. Section 5 contains applications of main results to Gabor frames.

2. Preliminaries

Some notations, de-nitions and auxiliary results are listed in this section.

Firstly, several de⁻nitions and a fact about the frames are given. Additional information on the subject can be found in [3-9].

Definition 2.1 Suppose that H is a separable Hilbert space and a countable family $\{x_i \mid i \in I\} \subset H$. If there exist constants $0 < A \leq B < \infty$ such that $\forall x \in H$,

$$A\|x\|^{2} \leq \sum_{i \in I}^{N} |\langle x, x_{i} \rangle|^{2} \leq B\|x\|^{2},$$
(1)

then $\{x_i \mid i \in I\}$ is called a frame for H, where the numbers A and B are called the lower and upper frame bounds of the frame, respectively. A frame is a tight frame if A and B can be chosen so that A = B, and is a normalized tight frame if A = B = 1.

Lemma 2.1 $\{x_i \mid i \in I\}$ is a frame for H if and only if (1) holds for all $x \in \mathcal{M}$, where \mathcal{M} is dense in H.

*i*Fhe translation operator

and the inverse Fourier transform is Ζ

$$f^{\vee}(\xi) = \int_{\mathbb{R}^n} f(\xi) e^{2\frac{j}{k}i \cdot \mathbf{x} \cdot \mathbf{y}} d\xi,$$

where $\xi \cdot x$ denotes the standard inner product in \mathbb{R}^n . We also use the standard notation ||f|| for the norm of $f \in L^2(\mathbb{R}^n)$, and $\langle f, g \rangle$ for the usual inner product of $f, g \in L^2(\mathbb{R}^n)$.

Throughout the paper, \mathbb{Z} is the set of all integers, the space \mathbb{T}^n will be identi⁻ed with $[0,1]^n$, $GL_n(\mathbb{R})$ denotes the set of all non-singular $n \times n$ matrices with real entries and \mathcal{D} is dened by

$$\mathcal{D} = \{ f \in L^2(\mathbb{R}^n) \mid \hat{f} \in L^\infty(\mathbb{R}^n) \text{ and } \hat{f} \text{ has compact support in } \mathbb{R}^n \}.$$

It is clear that \mathcal{D} is a dense subspace of $L^2(\mathbb{R}^n)$. For $\forall C \in GL_n(\mathbb{R})$, let $C' := (C')^{-1}$, where C^t denotes the transpose of C.

3. Some Lemmas

In order to verify the results, we establish two lemmas in this section.

Lemma 3.1 Let
$$J$$
 be a countable indexing set, $\{f_j(x) \mid j \in J\} \subset L^2(\mathbb{R}^n)$ and
 $C \in GL_n(\mathbb{R})$. If $ess \sup_{*} \frac{1}{|\det C|} \bigvee_{\substack{j \in J \\ j \in J}} |\hat{f}_j(\xi)|^2 < \infty$, then for all $f \in \mathcal{D}$,
 $\times \times |\langle f, T_{Ck}f_j \rangle|^2 = \sum_{\mathbb{R}^n} |\hat{f}(\xi)|^2 \frac{1}{|\det C|} \bigvee_{\substack{j \in J}} |\hat{f}_j(\xi)|^2 d\xi + R(f)$, (2)
where

where

$$R(f) = \frac{X \times 1}{\int_{\xi \in J} m \neq 0} \frac{1}{|\det C|} \int_{\mathbb{R}^n} \hat{f}(\xi) \overline{\hat{f}_j(\xi)} \hat{f}_j(\xi + C'm) \overline{\hat{f}(\xi + C'm)} d\xi.$$
(3)

З

The proof of Lemma 3.1 can be found in [12].

Lemma 3.2 Let J be a countable indexing set, $\{f_j(x) \mid j \in J\} \subset L^2(\mathbb{R}^n)$ and $C \in GL_n(\mathbb{R}).$ If $ess \sup_{s} \frac{1}{|\det C|} \bigotimes_{j \in J} |\hat{f}_j(\xi)|^2 < \infty$, then for all $f \in \mathcal{D}$, the series in (3) is absolutely convergent.

Proof. Notice that
$$|\overline{\hat{f}_{j}(\xi)} \hat{f}_{j}(\xi + C'm)| \leq \frac{1}{2} |\hat{f}_{j}(\xi)|^{2} + |\hat{f}_{j}(\xi + C'm)|^{2}$$
, hence

$$\begin{array}{c} \times \times & 1 \\ \xrightarrow{j \in J \ m \neq 0} & \overline{|\det C|} & \xrightarrow{[-2]{-1}} & \hat{f}(\xi) \overline{\hat{f}_{j}(\xi)} \hat{f}_{j}(\xi + C'm) \overline{\hat{f}(\xi + C'm)} d\xi \end{array} \\ \leq & \frac{1}{2} & \begin{array}{c} 1 \\ \xrightarrow{j \in J \ m \neq 0} & \overline{|\det C|} & \\ \xrightarrow{\mathbb{R}^{n}} & |\hat{f}(\xi) \hat{f}(\xi + C'm)| |\hat{f}_{j}(\xi)|^{2} d\xi \\ & + \frac{1}{2} & \\ \xrightarrow{j \in J \ m \neq 0} & \overline{|\det C|} & \\ & \mathbb{R}^{n}} & |\hat{f}(\xi) \hat{f}(\xi + C'm)| |\hat{f}_{j}(\xi + C'm)|^{2} d\xi. \end{array}$$

Obviously, it is enough to show that the series

$$\begin{array}{c} X \quad X \\ \\ \downarrow_{j \in J \ m \neq 0} \end{array} \frac{1}{|\det C|}$$

$$\mathfrak{m}_{m} = ess \sup_{\mathfrak{s}} \frac{1}{|\det C|} \left[\sum_{j \in J}^{\mathbb{Z}} \overline{\hat{f}_{j}(\xi)} \hat{f}_{\mathscr{D}}(\xi + C'm) \right], \quad \mathfrak{m} = \underset{m \neq 0}{\times} (\mathfrak{m}_{m}\mathfrak{m}_{-m})^{\frac{1}{2}}.$$

If

$$A_{1} = ess \inf_{*} \frac{1}{|\det C|} \sum_{j \in J}^{X} |\hat{f}_{j}(\xi)|^{2} - \varkappa > 0$$
(6)

and

$$B_1 = \operatorname{ess\,sup}_{*} \frac{1}{|\det C|} \sum_{j \in J}^{X} |\hat{f}_j(\xi)|^2 + \varkappa < +\infty,$$
(7)

then $\{T_{Ck}f_j(x) \mid k \in \mathbb{Z}^n, j \in J\}$ is a frame for $L^2(\mathbb{R}^n)$ with bounds A_1 and B_1 .

Proof. By Lemma 2.1, it is su±cient to prove Theorem 4.1 for all $f \in D$. By (7), Lemma 3.1 and Lemma 3.2, (2)holds, where

$$R(f) = \frac{X}{m \neq 0} \frac{1}{|\det C|} \int_{\mathbb{R}^n} \hat{f}(\xi) \overline{\hat{f}(\xi + C'm)} X_{j \in J} \overline{\hat{f}_j(\xi)} \hat{f}_j(\xi + C'm) d\xi.$$
(8)

By the Cauchy-Schwarz inequality, the change of variables $\eta = \xi + C'm$ and (8), we get

$$\begin{aligned} |R(f)| &\leq \frac{1}{|\det C|} \frac{A_{Z}}{|\det C|} |\hat{f}(\xi)|^{2} |\sum_{j \in J}^{X} \overline{f_{j}(\xi)} \hat{f}_{j}(\xi + C^{T}m)| d\xi \\ &\stackrel{\bar{h}_{Z}}{=} \frac{A_{Z}}{|\hat{h}(\xi + C^{T}m)|^{2}|} \sum_{j \in J} \overline{f_{j}(\xi)} \hat{f}_{j}(\xi + C^{T}m)| d\xi \\ &= \frac{1}{|\det C|} \frac{A_{Z}}{|\hat{h}(\xi + C^{T}m)|^{2}|} \sum_{j \in J} \overline{f_{j}(\xi)} \hat{f}_{j}(\xi + C^{T}m)| d\xi \\ &= \frac{A_{Z}}{|\hat{h}(\xi + C^{T}m)|^{2}|} \sum_{j \in J} |\hat{f}(\xi)|^{2}|} \sum_{j \in J} \overline{f_{j}(\xi)} \hat{f}_{j}(\xi + C^{T}m)| d\xi \\ &\stackrel{\bar{h}_{Z}}{=} \frac{A_{Z}}{|\hat{f}(\eta)|^{2}|} \sum_{j \in J} \overline{f_{j}(\eta)} \hat{f}_{j}(\eta - C^{T}m)| d\xi \\ &\leq \frac{A_{Z}}{|\hat{f}(\eta)|^{2}|} \sum_{j \in J} \overline{f_{j}(\eta)} \hat{f}_{j}(\eta - C^{T}m)| d\xi \\ &\leq \frac{A_{Z}}{|\hat{f}(\eta)|^{2}|} \sum_{j \in J} |\hat{f}(\eta)|^{2}| |\hat{f}||^{2} \\ &= |\hat{\pi}||f||^{2}. \end{aligned}$$
Consequently, by (2), (6), (7) and (9),
$$A_{1}||f||^{2} \leq \frac{X \times X}{|_{j \in J}|_{k \in \mathbb{Z}^{n}}} |\langle f, T_{Ck}f_{j} \rangle|^{2} \leq B_{1}||f||^{2}, \quad \forall f \in \mathcal{D}. \end{aligned}$$

Therefore, the proof is completed.

Remark 4.1 It is easy to see that frame bounds of above theorem are better than ones of theorem 4.1 in [12].

Remark 4.2 It is not di±cult to show that $\begin{array}{c} \times \\ m \neq 0 \end{array} = \begin{array}{c} \times \\ m \to 0 \end{array} = \begin{array}{c} \times \end{array} = \begin{array}{c} \times \\ m \to 0 \end{array} = \begin{array}{c} \times \end{array} = \begin{array}{c} \times \end{array}$ = \begin{array}{c} \times \end{array}

$$|R(f)| \leq \bigvee_{m \neq 0}^{\mathsf{X}} (\mathtt{m}_m \mathtt{m}_{-m})^{\frac{1}{2}} ||f||^2 \leq \mathtt{m}' ||f||^2.$$

Now, the second su±cient condition is stated.

Theorem 4.2 Let J be a countable indexing set, $\{f_j(x) \mid j \in J\} \subset L^2(\mathbb{R}^n)$ and $C \in GL_n(\mathbb{R})$. If

$$A_{2} = ess \inf_{*} \frac{1}{|\det C|} \sum_{j \in J}^{X} |\hat{f}_{j}(\xi)|^{2} - \pi' > 0$$

and

$$B_2 = \operatorname{ess\,sup}_{*} \frac{1}{|\det C|} \sum_{j \in J}^{X} |\hat{f}_j(\xi)|^2 + \mathfrak{a}' < +\infty,$$

then $\{T_{Ck}f_j(x) \mid k \in \mathbb{Z}^n, j \in J\}$ is a frame for $L^2(\mathbb{R}^n)$ with bounds A_2 and B_2 .

Using another estimation technique, we able to give the third su±cient condition for the system $\{T_{Ck}f_{\mathscr{D}}(x) \mid k \in \mathbb{Z}^n, \alpha \in \mathbb{R}\}$ to be a frame for $L^2(\mathbb{R}^n)$.

Theorem 4.3 Let J be a countable indexing set, $\{f_j(x) \mid j \in J\} \subset L^2(\mathbb{R}^n)$ and $C \in GL_n(\mathbb{R})$. If

$$A_{3} = ess \inf_{*} \left\| \frac{1}{|\det C|} \bigwedge_{j \in J} |\hat{f}_{j}(\xi)|^{2} - \sum_{m \neq 0} |X| + C'm \right\| > 0, \quad (10)$$

and

$$B_3 = ess \sup_{\mathscr{Y}} \left\| \frac{1}{|\det C|} \underset{m \in \mathbb{Z}^n}{\times} \right\|_{j \in J} \left\| \underset{j \in J}{\times} \frac{\#}{\hat{f}_j(\xi)} \hat{f}_j(\xi + C'm) \right\|_{-\infty} < +\infty, \tag{11}$$

then $\{T_{Ck}f_j(x) \mid k \in \mathbb{Z}^n, j \in J\}$ is a frame for $L^2(\mathbb{R}^n)$ with bounds A_3 and B_3 .

Proof. By Lemma 2.1, it is su±cient to prove Theorem 4.3 for all $f \in \mathcal{D}$. We need to estimate R(f) in (8). It deduces from the Cauchy-Schwarz inequality and the

change of variables $\eta = \xi + C'm$ that

$$|R(f)| \leq \frac{X}{\substack{m \neq 0 \\ m \neq 0}} \frac{1}{|\det C|} \sum_{\mathbb{R}^{n}} |\hat{f}(\xi)|^{2} X_{j \in J} \frac{1}{\hat{f}_{j}(\xi)} \hat{f}_{j}(\xi + C'm)| d\xi \times \frac{1}{2} \\ \tilde{A}_{Z} |\hat{f}(\xi + C'm)|^{2} X_{j \in J} \frac{1}{\hat{f}_{j}(\xi)} \hat{f}_{j}(\xi + C'm)| d\xi + \frac{1}{2} \\ \leq \frac{\tilde{A}_{R}}{\mathbb{R}^{n}} |\hat{f}(\xi)|^{2} \frac{X}{m \neq 0} \frac{1}{|\det C|} |X_{j \in J} \frac{1}{\hat{f}_{j}(\xi)} \hat{f}_{j}(\xi + C'm)| d\xi \times \frac{1}{2} \\ \tilde{A}_{Z} |\hat{f}(\eta)|^{2} \frac{X}{m \neq 0} \frac{1}{|\det C|} |X_{j \in J} \frac{1}{\hat{f}_{j}(\eta)} \hat{f}_{j}(\eta) - C'm)| d\xi + \frac{1}{2} \\ = \frac{R}{\mathbb{R}^{n}} |\hat{f}(\xi)|^{2} \frac{X}{m \neq 0} \frac{1}{|\det C|} |X_{j \in J} \frac{1}{\hat{f}_{j}(\xi)} \hat{f}_{j}(\xi + C'm)| d\xi.$$

$$(12)$$

By (2), (10), (11) and (12), we have

$$A_3 \|f\|^2 \leq \underset{j \in J \ k \in \mathbb{Z}^n}{\times} |\langle f, T_{Ck} f_j \rangle|^2 \leq B_3 \|f\|^2, \quad \forall f \in \mathcal{D}.$$

Therefore, the proof of Theorem 4.3 is completed.

Remark 4.3 Obviously, frame bounds of this theorem are better than ones of theorem 4.2, and are also better than theorem 4.2 in [12].

5. Applications of main results to Gabor system

In this section, we apply Theorems 4.1, 4.2 and 4.3 to Gabor system, and then obtain some new results of Gabor frames. Let $g'(x) \in L^2(\mathbb{R}^n)$, $l = 1, \dots, L$, L be a positive integer and $g'_{m;k} = M_{Bm}T_{Ck}g'$. The Gabor system, which generated by g'(x) $(l = 1, \dots, L)$, is defined by

$$\{g'_{m;k}(x) \mid m, k \in \mathbb{Z}^n, \ l = 1, \cdots, L\},\$$

where $B, C \in GL_n(\mathbb{R})$. If we change the order of the translation and modulation operators, we also have the system

$$\{T_{Ck}M_{Bm}g'(x) \mid m,k \in \mathbb{Z}^n, \ l=1,\cdots,L\}.$$

It is immediate to see that $\{g'_{m,k}(x) \mid m, k \in \mathbb{Z}^n, l = 1, \dots, L\}$ is a frame for $L^2(\mathbb{R}^n)$ if and only if $\{T_{Ck}M_{Bm}g'(x) \mid m, k \in \mathbb{Z}^n, l = 1, \dots, L\}$ is a frame for $L^2(\mathbb{R}^n)$, and

the frame bounds is the same in the two cases. In particular, $\{T_{Ck}M_{Bm}g'(x) \mid m, k \in \mathbb{Z}^n, l = 1, \dots, L\}$ is shift-invariant. So, the main results can apply directly to the Gabor system.

Let J be defined by $J = \{(l,m) \mid m \in \mathbb{Z}^n, l = 1, \dots, L\}$, and $\forall \gamma \in J$, $f_{\circ}(x) = M_{Bm}g'(x)$. Then the system $\{T_{Ck}f_{\circ}(x) \mid k \in \mathbb{Z}^n, \gamma \in J\}$ is the system $\{T_{Ck}M_{Bm}g'(x) \mid m, k \in \mathbb{Z}^n, l = 1, \dots, L\}$. Notice that $\forall \gamma = (l,m) \in J$, $\hat{f}_{\circ}(\xi) = \hat{g}'(\xi - Bm)$, hence $\forall k \in \mathbb{Z}^n$,

$$\times \frac{1}{\hat{f}_{\circ}(\xi)} \hat{f}_{\circ}(\xi + C'k) = \times \frac{1}{\sum_{l=1}^{N} m \in \mathbb{Z}^{n}} \frac{\partial f'(\xi - Bm)}{\partial f'(\xi - Bm + C'k)}$$

Therefore, using Theorem 4.1, Theorem 4.2 and Theorem 4.3, respectively, we obtain

Theorem 5.1 Let $B, C \in GL_n(\mathbb{R}), g'(x) \in L^2(\mathbb{R}^n), l = 1, \dots, L$ and L be a positive integer. If

then $\{g'_{m;k}(x) \mid m, k \in \mathbb{Z}^n, l = 1, \dots, L\}$ is a frame for $L^2(\mathbb{R}^n)$ with bounds C_1 and D_1 , where

$$\mathbb{E}_{G} = \bigotimes_{k \neq 0}^{\mathsf{X}} (\mathbb{E}_{k}^{G} \mathbb{E}_{-k}^{G})^{\frac{1}{2}}, \quad \mathbb{E}_{k}^{G} = ess \sup_{*} \frac{1}{|\det C|} \left[\bigotimes_{l=1}^{\mathsf{X}} \bigotimes_{m \in \mathbb{Z}^{n}}^{\mathsf{X}} \frac{\overline{\mathfrak{g}'(\xi - Bm)}}{\mathfrak{g}'(\xi - Bm + C'k)} \right].$$

Theorem 5.2 Let $B, C \in GL_n(\mathbb{R}), g'(x) \in L^2(\mathbb{R}^n), l = 1, \dots, L$ and L be a positive integer. If

$$C_{2} = ess \inf_{*} \frac{1}{|\det C|} \underset{l=1}{\overset{}{\times}} \frac{X}{m \in \mathbb{Z}^{n}} |\hat{g}'(\xi - Bm)|^{2} - \pounds_{G}' > 0,$$

$$D_{2} = ess \sup_{*} \frac{1}{|\det C|} \overset{\overset{}{\times}}{\xrightarrow{}} \frac{X}{m \in \mathbb{Z}^{n}} |\hat{g}'(\xi - Bm)|^{2} + \pounds_{G}' < \infty$$

$$D_2 = ess \sup_{s} \frac{1}{|\det C|} |_{l=1} m \in \mathbb{Z}^n} |\hat{g}'(\xi - Bm)|^2 + \mathfrak{E}'_G < \infty,$$

then $\{g'_{m;k}(x) \mid m, k \in \mathbb{Z}^n, l = 1, \dots, L\}$ is a frame for $L^2(\mathbb{R}^n)$ with bounds C_2 and D_2 , where

$$\mathsf{E}'_{G} = \bigotimes_{k \neq 0}^{\mathsf{X}} \mathsf{E}^{G}_{k}, \quad \mathsf{E}^{G}_{k} = ess \sup_{s} \frac{1}{|\det C|} \left[\bigotimes_{l=1}^{\mathsf{X}} \bigotimes_{m \in \mathbb{Z}^{n}}^{\mathsf{X}} \overline{\hat{g}'(\xi - Bm)} \hat{g}'(\xi - Bm + C'k) \right].$$

Remark 5.1 In one dimensional case, theorem 5.2 was given in [13].

Theorem 6.3 Let $B, C \in GL_n(\mathbb{R}), g'(x) \in L^2(\mathbb{R}^n), l = 1, \dots, L$ and L be a positive integer. If

$$C_{3} = ess \inf_{s} \frac{1}{|\det C|} (\overset{\checkmark}{\underset{l=1 \ m \in \mathbb{Z}^{n}}{\times}} |\hat{g}'(\xi - Bm)|^{2} - \overset{)}{\underset{l=1 \ m \in \mathbb{Z}^{n}}{\times}} (\xi - Bm) |\hat{g}'(\xi - Bm + C'k)| > 0,$$

$$k \neq 0 \quad l=1 \ m \in \mathbb{Z}^{n} \quad \tilde{A} \times (\xi - Bm) \hat{g}'(\xi - Bm + C'k)| > 0,$$

$$D_{3} = ess \sup_{s} \frac{1}{|\det C|} (\xi - Bm) \overset{\checkmark}{\underset{k \in \mathbb{Z}^{n}}{\times}} |\overset{\checkmark}{\underset{l=1 \ m \in \mathbb{Z}^{n}}{\times}} (\xi - Bm) \hat{g}'(\xi - Bm + C'k)| < +\infty,$$

then $\{g'_{m;k}(x) \mid m, k \in \mathbb{Z}^n, l = 1, \dots, L\}$ is a frame for $L^2(\mathbb{R}^n)$ with bounds C_3 and D_3 .

Remark 5.2 If n = 1 and L = 1, then theorem 5.3 is just theorem 8.4.4 in [9]. In addition, the upper bound of theorem 5.3 is superior to one of theorem 2.3 in [13].

Since $\langle f, T_{Ck}M_{Bm}g' \rangle = \langle f^{\vee}, (T_{Ck}M_{Bm}g')^{\vee} \rangle = \langle f^{\vee}, T_{-Bm}M_{Ck}(g')^{\vee} \rangle$ by the Plancherel Theorem, we able to present similar results in the time domain. Them were omitted here.

References

- D. J. Du±n and A. C. Schae[®]er , A class of non-harmonic Fourier series, Trans. Amer. Math. Soc., 72:341-366, 1952.
- [2] I. Daubechies , A. Grossmann and Y. Meyer, Painless nonorthogonal expansion, J. Math. Phys., 27:1271-1283, 1986.
- [3] I. Daubechies, Ten Lectures on Wavelets, SIAM, Philadelphia, 1992.
- [4] H. G. Feichtinger and T. Strohmer(Eds.), Gabor Analysis and Algorithms: Theory and Applications, Birkhäuser, Boston, 1998.
- [5] K. Grächenig, Foundations of Time-frequency Analysis, Birkhäuser, Boston, 2001.
- [6] H. G. Feichtinger and T. Strohmer (Eds.), Advances in Gabor Analysis, Birkhäuser, Boston, 2003.
- [7] J. Kovacevic and A. Chebira, "Life beyond bases: The advent of frames (Part I)," IEEE Signal Process. Mag., 24(4): 86-104, 2007.
- [8] J. Kovacevic and A. Chebira, "Life beyond bases: The advent of frames (Part II)," IEEE Signal Process. Mag., 24(5): 115-125, 2007.
- [9] O. Christensen, An Introduction to Frames and Riesz Bases, Birkhäuser, Boston, 2003.
- [10] T. Strohmer and R. Heath, Grassmannian frames with applications to coding and communication, Appl. Comput. Harmonic Anal., 14(2): 257-275, 2003.

- [11] D. Labate, A uni⁻ed characterization of reproducing systems generated by a ⁻nite family, Journal of Geometric Analysis, 12(4): 469(491,2002.
- [12] D. F. Li, G. C. Wu and X. H. Yang, Uni⁻ed conditions for wavelet frames and Gabor wavelets, Georgian Mathematical Journal, to appear.
- [13] D. F. Li, G. C. Wu and X. J. Zhang, Two su±cient conditions in frequency domain for Gabor frames, Applied Mathematics Letters, 24(4): 506-511,2011.