Professor Zhou, Mengchu

Macau Institute of Systems Engineering

Office: Tel.:

E-mail: mengchu@gmail.com

Academic Oualification:

Ph. D. in Computer & Systems Eng., Rensselaer Polytechnic Institute, Troy, NY, 1990 M. S. in Automatic Control, Beijing Institute of Technology, Beijing, China, 1986 B. S. in Control Engineering, Nanjing Univ. of Sci. & Tech., Nanjing, China, 1983

Teaching Area

Research Area

Intelligent automation, Petri nets, Internet of Things, semiconductor manufacturing, Web service, workflow, big data, learning algorithms and systems, transportation, and energy systems.

Working Experience

Macau University of Science and Technology, Professor at the Institute of Systems Engineering 2014- present

New Jersey Institute of Technology, Distinguished Professor in Electrical and Computer Engineering 2013-present

Tongji University, Guest Professor in Computer Science and Technology 2010-2015
XiDian University, Guest Professor in Electro-Mechanical Engineering 2007-2010
Chinese Academy of Science, Guest Researcher in the Institute of Automation 2003-2005
New Jersey Institute of Technology, Professor in Electrical and Computer Engineering 2000-2013

New Jersey Institute of Technology, Associate Professor in Electrical and Computer Engineering 1990-1995

Academic Publication

Book

- 1. M. C. Zhou, H.-X. Li and M. Weijnen, Contemporary Issues in Systems Science and Engineering, IEEE Press/Wiley, Hoboken, NJ, 2015.
- 2. W. Tan and M. C. Zhou, Business and Scientific Workflows: A Service-Oriented Approach, IEEE Press/Wiley, Hoboken, NJ, 2013
- 3. N. Q. Wu and M. C. Zhou, System Modeling and Control with Resource-Oriented Petri Nets, CRC Press, New York, 2010. 312 pages, Control Engineering Series. ISBN: 1439808848.
- 4. Z. W. Li and M. C. Zhou, Modeling, Analysis and Deadlock Control of Automated Manufacturing Systems, Science Press, Beijing, China, 2009, 215 pages (李志武与周孟初, 自动制造系统建模、分析与死锁控制, 科学出版社, 北京, 2009).
- 5. Z. W. Li and M. C. Zhou, Deadlock Resolution in Automated Manufacturing Systems: A Novel Petri Net Approach, Springer, New York, 2009. 237 pages. Advances in Industrial Control Series. ISBN: 9781848822436.

- 6. B. Hruz and M. C. Zhou, Modeling and Control of Discrete Event Dynamic Systems, Springer, London, UK, 2007. 341 pages, Advanced Textbooks in Control and Signal Processing. ISBN: 9781846288722
- 7. M. C. Zhou and M. P. Fanti (Ed.), Deadlock Resolution in Computer-Integrated Systems, Marcel Dekker, New York, January 2005.
- 8. H. Zhu and M. C. Zhou, Object-Oriented Programming in C++: A Project-based Approach, Tsinghua University Press, November 2005.
- 9. M. C. Zhou and K. Venkatesh, Modeling, Simulation and Control of Flexible Manufacturing Systems: A Petri Net Approach. World Scientific, Singapore, 1998.
- 10. M. C. Zhou (Ed.), Petri Nets in Flexible and Agile Automation. Kluwer Academic Publishers, London, 1995.
- 11. Sodhi, R. (Ed.), M. C. Zhou and S. Das (Assistant Eds.), Advances in Manufacturing Systems: Modeling, Design and Analysis, Elesevier Scientific Publishers: Amsterdam, The Netherlands, 1994.
- 12. M. C. Zhou and F. DiCesare, Petri Net Synthesis for Discrete Event Control of Manufacturing Systems. Kluwer Academic Publishers, London, UK, 1993.

Book Chapters

- 1. DiCesare F. and M. C. Zhou, "Symbolic performance evaluation of concurrent systems by combining Petri nets and moment generating functions," in Concurrent Engineering Techniques and Applications, C.T. Leondes (Ed.), Academic Press, 379-417, 1994.
- 2. Zhou, M. C. and A. D. Robbi, "Applications of Petri net methodology to manufacturing systems," in Computer Control of Manufacturing Systems, S. Joshi and G. Smith (eds.), Chapman and Hall, 307-330, 1994.
- 3. Zhou, M. C. and R. Zurawski, "Introduction to Petri Nets in Flexible and Agile Automation," in Petri Nets in Flexible and Agile Automation, M. C. Zhou (Ed.), Kluwer Academic Publishers, Boston, MA, 1-42, 1995.
- 4. Venkatesh, K., M. C. Zhou and R. J. Caudill, "Discrete-Event Control Design for Manufacturing Systems via Ladder Logic Diagrams and Petri Nets: A Comparative Study," in Petri Nets in Flexible and Agile Automation, M. C. Zhou (Ed.), Kluwer Academic Publishers, Boston, MA, 289-332, 1995.
- 5. Zurawski, R. and M. C. Zhou, "Functional and Behavioral Modeling of Automated Manufacturing Systems," in Handbook of Industrial Electronic Engineering, CRC Press, 1996, 669-676.
- 6. Zhou, M. C., A. D. Robbi, and R. Zurawski, "Discrete Event Simulation," in Handbook of Industrial Electronic Engineering, CRC Press, 1996, 694-705.

Engineering, J. G. Webster (Ed.), John-Wesley, Volume 16, 143-149, 1999.

Computer Aided Design, Engineering, and Manufacturing: Systems Techniques and Applications, Vol. IV, Optimization Methods for Manufacturing, C.T. Leondes (Ed.), Gordon & Breach, Chapter 8, pp. 1-23, 2001.
9. Caudill, R., Zhou, M. C., Hu, J. J., Tang, Y., and Limaye, K., "Demanufacturing System Simulation and Modeling," in Mechanical Lifecycle Engineering: Good Environmental Design and Manufacturing, Chapter 17,

. 0 🗆) 🗆 🗆 🗎 🗎 🖂 🖂 🖂 🖂 🖂 🖂 🖂 🖂 🖂 🖂 🖂 🖂 🖂
.1 □)□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □
. 2))
. 3 🗆) 🗆) 🗆 🗆) 🗆 🗆 O O O O O O O O O O O O O O O O O
. 4 🗆) 🗆 🗆 🗆 🗆 🗆 🗆 🗆 Concepts, Methods, and Practices, R. A. Gonzalez, N. Chen, and A. Dahanayake (Eds.), Information Science Reference, pp. 254-285, Hersey, NY, 2008.
2. Li alid A. Al-Allinari, 101 Global, Hershey, FA, pp. 130-177, 2013.
Manufacturing Systems: Recent Advances, Edited by Z. Li and A. Al-Ahmari, IGI Global, Hershey, PA, pp. 178-210, 2013
/-
/
// 🗆 🗆 🗎 🗎 🖂 🖂 🖂 🖂 🖂 🖂 🖂 III III III III II
/0 🗆) Design to Applications, CRC Press, Edited by I. Nikolaidis and K. Iniewski, pp. 141-157, 2014.
/1
/2 □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □
/3 🗆 🗘 🖂 🖂 🖂 🖂 🖂 🖂 🖂 🖂 🖂 🖂 🖂 🖂 🖂
/4 🗆 🗇) 🗆 🗇 🖂 🖂) 🖂 🖂) 🖂) 🖂) 🖂) 🖂)

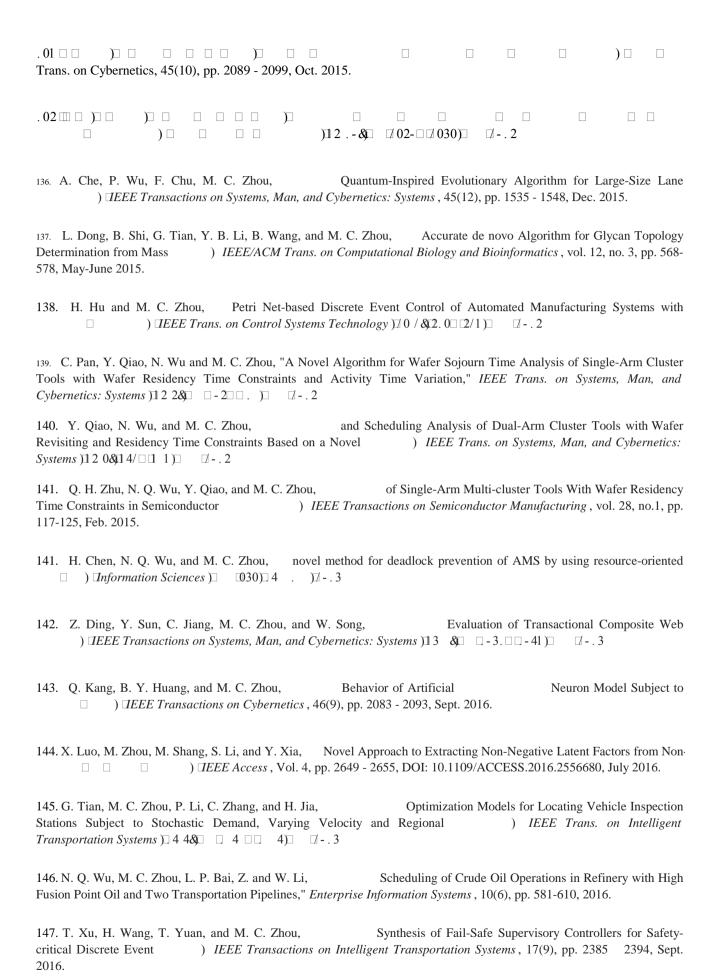
Engineering, Edited by M. C. Zhou, HX. Li and M. Weijnen,	
Journal Articles (2010-)	
2010.	
/& .)))
0&)	
1&); ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	
2&):	,
3 IIII) DO	,
7. Q. Shen, H. Chen, F. Chu, and M. C. Zhou, "Multi-mode trans Adaptive Search and Path Relinking," Transactions of the Institution May/June 2011.	
8. Z. Ming and M. C. Zhou, "Impact of Zero-Voltage Notches or Converters" IEEE Trans. on Industrial Electronics, 54(6), pp. 23-	•
10. Wang, Z. W., M. C. Zhou, G. Slabaugh, J. Zhai, and T. Fang	
./	0-0.)
]

.1 □ □)□)□)□ □ □ □ □ □ □ □ □ □ □ □ □ □	
. 2))	1) 0 4400
. 3))	
.4	□ □ □ 11 / . 89 □ □ /
. □)□)□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	
	□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □
20. Chu, C., F. Chu, M. Zhou, H. Chen, and Q. Shen, "A Polynomial Dynamic Programming Algorithm for Transportation Planning," IEEE Trans. on Automation Science and Engineering, 9(1), pp. 42-55, Jan. 20.	
21. Wu, N. and M. C. Zhou, "Schedulability Analysis and Optimal Scheduling of Dual-Arm Cluster Tool Residency Time Constraint and Activity Time Variation," IEEE Trans. on Automation Science and Engir pp. 203-209, Jan. 2012.	
// _))	
/0)))1//&;
/1 🗆 🗆 🖂 🖂 🖂) 🗆 🖂 🖂 🖂 🖂 1 🖂 1 🖂 1 🖂 1 Man, and CyberneticsPart A: Systems and Humans, 42(2), pp. 491 - 496, March 2012.)
/ 2 □ □)□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □)
/3 □)□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □)
/4)1/08) [
/	

Continue
0-
0.
0/ □)□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □
00 0 0 0 0 0 0 0 0 0
01 0 0 0 0 0 0 0 0 0
02□)□)□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □
03))
04 (11) (12) (11) (12) (11) (12) (11) (12) (11) (12) (11) (12) (11) (12) (11) (12) (11) (12) (11) (12) (12
0
0
1
1. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1/
10

11 (III))			
		D D D D D D D D D D D D D D D D D D D	□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □
13)))			010.80 0 3/-40 00
14))			
1			
49. Dug, Z., C. Jiang and M. C. Zhou, "Refinement," ACM Transactions in Em	-		·
2-)))))	/.) /.)
2.))7/3 . &
52. G. Liu, C. Jiang, M. Zhou, and P. X Systems, 43(2), pp. 291 - 302, March 20	=	s," IEEE Trans. on Sy	stems, Man, and Cybernetics:
20)))) 0	
21]));;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
22 \(\text{\begin{align*}[c]{ccccccccccccccccccccccccccccccccccc	□ □ □ □ □ stems, 14(1), pp. 146-154, N		
56. Q. Kang, M. C. Zhou, J. An, and Q. Distributed Generator Failures in Power 343-353, April 2013.	_		
57. L. Li, Z. Sun, M. C. Zhou, and F. Q IEEE Trans. on Automation Science and			tor Wafer Fabrication Facility,"
2 0 0) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0)) 1 / 8 14 24) 0

2
60. S. Wang, M. C. Zhou, Z. Li, and C. Wang, "A New Modified Reachability Tree Approach and Its Applications to Unbounded Petri Nets," IEEE Trans. on Systems, Man, and Cybernetics: Systems, 43(4), pp.932-940, July 2013.
3. □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □
3/)
30 0 0 0 0 0 0 0 0 0
31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
32 D D D D D D D D D D D D D D D D D D D
33 □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □
34 \(\text{\tint{\text{\tint{\text{\tinitet{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tin}}\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\texi}\tintet{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\
3
3)
4-
4. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4/
40


41
Feb. 2014.
75. Y. Qiao, N. Wu and M. C. Zhou, "Scheduling of Dual-Arm Cluster tools with Wafer Revisiting and Residency
43
77. Y. Du, Q. Liang and M. C. Zhou, "Analysis and Application of Logical Petri Nets to E-commerce Systems" IEEE
4 III II I
4
-
/ 🖽 🗆 🕦 🗎 🗎)□ 🖂 🖂)□ 🖂 🖂)□ 🖂 🖂)□ 🖂 🖂)□ 🖂 Biochemistry and Biophysics, 68(3), pp. 577-82, Apr. 2014.
0
1 III
2
3 🕮 🗆) 🗆 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 🕮 🕒)□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □

88. A. Ratnakar and M. C. Zhou " An Ultrasound System for Tumor Detection in Soft Tissues Using Low Transient Pulse," IEEE Systems Journal, 8(3), pp. 939-948, Sept. 2014.

		*		[] k(10), pp. 14) 🗆	
)1-1412, Oc) 🗆 🗆)□
. 🗆 🗆				□ 30 & 134-	□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	[
/ 🗆 🗆						□) <u>/</u> /		□ 8/ 141)□	□1
0 💷 🗆))) 🗆		

1	
105. S. Wang, M. C. Zhou, and W. Wu, "Design of a Maximally Permissive Liveness-enforcing Supervisor with	
3	
4) 🗆
III 1 1 1 1 1 1 1 1 1	
110. H. Liu, K. Xing, W. Wu, M. C. Zhou, and H. Zou, "Deadlock Prevention for Flexible Manufacturing System.	
/)) 🗆
Control of Central Chiller Plant with Thermal Energy Storage Via Dynamic Programming and Mixed-Integer Line Description Des	
1	
) [
116. X. Zuo, C. Chen, W. Tan and M. C. Zhou, "Vehicle Scheduling of Urban Bus Line via an Improved Multi-	2
]

□ □			\Box						
of Guidance,	, Control,	and Dy	namics,	38(5), pp	. 944-	949, May 2015.			
./- 🗆 🗆 🗆))			\Box				
) 🗆				\square	/ & □ 3 4-)□ 2
				,				,	,
/	V -		>		$\overline{}$				
./.Ш□	\sqcup)	$\mu \sqcup \iota$)		∐ L		

150. N. Q. Wu, Y. Qiao, and M. C. Zhou, A Method for Responding to Process Module Failure in Residency Time Constrained Single-Arm Cluster Tools, Australia Patent, 2014100522, 2014.
Professional Certification and Awards
/20
/2=
2014 Highly cited scholar in engineering by Web of Science/Thomson Reuters
2013 Distinguished Service Award, IEEE Robotics and Automation Society, May 2013.
2012 Top one of 2012 most highly cited scholars in engineering globally by Web of Science/Thomson Reuters (http://community.thomsonreuters.com/t5/InCites-Customer-Forum/Preliminary-publication-of-new-lists-of-Highly-Cited-Researchers/td-p/36685)
//o
2012 Saul K. Fenster Innovation in Engineering Education Award, Newark College of Engineering, New Jersey Institute of Technology
2010 Franklin V. Taylor Memorial Award, IEEE Systems, Man, and Cybernetics Society.
2005-2011 and 2015-present, Distinguished Lecturer, IEEE Systems, Man and Cybernetics Society.
/2 Automation Society.
2004 Outstanding Contribution Award, IEEE Systems, Man and Cybernetics Society

148. N. Q. Wu, F. J. Yang, Y. Qiao, and M. C. Zhou, One-Wafer Cyclic Scheduling of Hybrid Multi-Cluster Tools in

149. N. Q. Wu, F. J. Yang, Y. Qiao, and M. C. Zhou, One-Wafer Cyclic Scheduling of Single-Arm Multi-Cluster Tools with

Semiconductor Manufacturing, Australia Patent, 2014100514, 2014.

Two-Space Buffering Modules, Australia Patent, 2014100513, 2014.

2001 Asian American Achievement Award in the category of Professional and Academic Achievements, Asian American Heritage Council of New Jersey.											
/□) [
/							&J2				
2000 Humboldt Research Award for US Senior Scientists, Alexander von Humboldt Foundation, Germany											
2000 Lead	2000 Leadership Award, Chinese Association for Science & Technology - USA										
1996 Harlan J. Perlis Award for Research, New Jersey Institute of Technology											
1994 Computer-Integrated Manufacturing UNIVERSITY-LEAD Award by Society of Manufacturing Engineers (LEAD=Leadership and Excellence in the Application and Development of integrated manufacturing)											
1994 Outstanding Service Award by Chinese Association for Science & Technology - USA											
Profession	nal Society Me	mbershi	p								
Fellow of IEEE, IEEE Systems, Man, and Cybernetics Society, IEEE Robotics and Automation Society, and IEEE Control Systems Society.											
Fellow, Ar	merican Associa	tion for th	ne Advai	ncement of	f Scienc	ce (AA	AAS)				
Fellow, Int	ernational Feder	ration of	of Autor	matic Cont	rol (IFA	AC)					